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“Hidden Profiles” in Corporate Prediction Markets:  
The Impact of Public Information Precision and Social Interactions 

 

Abstract 

Recently, large companies are experimenting with corporate prediction markets run among their 

employees. In the present study, we develop an analytical model to analyze the effects of information 

precision and social interactions on prediction market performance. We find that increased precision of 

public information is not always beneficial to the prediction market accuracy because of the “hidden 

profiles” effect: the information-aggregation mechanism places a larger-than-efficient weight on existing 

public information. We show that a socially embedded prediction market with information sharing 

among participants may help correct such inefficiency and improve the prediction market performance. 

We also identify conditions under which increased precision of public information is detrimental in a 

non-networked prediction market and in a socially embedded prediction market. These results should be 

of interest to practitioners as the managerial implications highlight the detrimental effect of public 

information and the role of social networking among employees in a corporate prediction market. 

 

Keywords: prediction markets, social networks, public information, information sharing, hidden 

profiles  
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“Prediction markets comprising a diverse set of consumers can be valuable tools for companies 

spanning a wide range of industries and at every stage in the product or service life cycle and be used 

for: narrowing the new-product development funnel; concept testing; forecasting; pricing; message 

optimization; and promotion testing.” 

— Julie Schlack, Senior Vice President at Communispace1 

 

“Actors do not behave or decide as atoms outside a social context.”  

— Granovetter (1985), p. 487 

1  Introduction 

How to take advantage of the knowledge dispersed in various parts of their organizations for 

better decision making has been a persistent challenge for large corporations. Lew Platt, the former chief 

executive of Hewlett-Packard, observed that, “if only HP knew what HP knows, we would be three times 

more productive.”2 Enterprise collective intelligence isn’t about changing a specific industry, but rather 

revolutionizing the nature of how businesses operate and changing the landscape of corporate decision 

making. In the classical command-and-control model of businesses, corporate decision making is 

generally hierarchical. The manager of each business department is responsible for acquiring all 

information from that department, synthesizing it, and making decisions or reporting it up the chain of 

command. While this approach can sometimes lead to an optimal quantity and quality of information 

reaching the corporate decision maker, it also has a significant informational problem: The information 

necessary to make a decision can be filtered or distorted in the hierarchy (Abaramowicz and Henderson 

2007).  

An alternative model of decision making is to facilitate the flow of information around the 

hierarchy by tapping into and exploiting the collective intelligence within the organization. A common 

                                                 
1 See http://www.quirks.com/articles/2013/20130509.aspx. 
2 See http://www.bloomberg.com/bw/stories/2008-12-22/harrahs-new-twist-on-prediction-marketsbusinessweek-business-news-stock-market-and-
financial-advice.  
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application of corporate collective intelligence is a prediction market—a speculative or betting market 

that invites participants to speculate on uncertain future events. It works similarly to a financial market. 

A risky “asset” is defined as reflecting an issue of interest to the company such as the product’s readiness 

to launch and sales trends of a new product. Prediction market prices have informational value because 

they aggregate the beliefs of market participants and reveal what the market’s overall forecasts are. 

Companies have made increasing use of prediction markets to help make business decisions. As 

documented in Chen and Plott (2002), Cowgill, Wolfers, and Zitzewitz (2009), and Cowgill and 

Zitzewitz (2014), a number of companies in a broad range of industries, such as Hewlett-Packard, Intel, 

BestBuy, Microsoft, Ford, Chrysler, Google, Eli Lilly, General Electric, and Siemens, have begun 

experimenting with corporate prediction markets. The prediction tasks vary from drug development 

success at Eli Lilly3 to monthly operating profits and revenues at Hewlett-Packard (Chen and Plott 2002); 

from a project completion date at Siemens (Leigh and Wolfers 2007) to allocation of manufacturing 

capacity at Intel (Hopman 2007); and from weekly vehicle sales at Ford (Montgomery et al. 2013) to the 

number of Gmail users at Google (Cowgill, Wolfers, and Zitzewitz, 2009). Early evidence on the 

performance of corporate prediction markets has been encouraging: Similar successes have been 

repeatedly observed in many corporate prediction markets, and the prediction markets outperform 

existing mechanisms in terms of forecasting precision. 

A fundamental innovation of corporate prediction markets is to introduce a collaborative market 

mechanism to augment the hierarchical decision-making process and improve overall decision quality. 

Essentially, a prediction market is a smart market system that can provide decision support in complex 

environments (Bichler, Gupta, and Ketter 2010). Coase (1937) explained that the existence of firms is 

driven by the fact that the benefits of hierarchy and command-and-control exceed the transaction costs. 

Prediction markets have the potential to profoundly reduce the costs of hierarchy by allowing 

                                                 
3 https://www.crowdworx.com/news/crowdworx-interview-carol-gebert-prediction-markets-pharmaceuticals-industry/.  

https://www.crowdworx.com/news/crowdworx-interview-carol-gebert-prediction-markets-pharmaceuticals-industry/
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information to flow to top decision makers (Abaramowicz and Henderson 2007). CEOs and high-ranking 

managers are tasked with filtering and analyzing information; however, the data that they receive is also 

filtered (and distorted) by their subordinates. The social pressures within a company may lead some 

employees to conform to existing public information, such as official reports or the opinion of some 

high-ranking managers, although these employees may have valuable information to share—an effect 

known as “hidden profiles” (Stasser and Titus 1985; Stasser and Titus 2003; Sunstein 2005). The original 

idea of the hidden profile effect describes a biased pattern of information distribution in which some 

information, prior to group discussion, is shared by all group members (public information), and some 

is unique to individual members (private information). Group members often fail to effectively pool their 

information because discussions tend to be dominated by public information that members hold before 

the discussion. In other words, hidden profile refers to the phenomenon of overweighting public 

information in general, and it can arise from different sources. Prendergast (1993) proposed an economic 

theory of “yes men,” where employees have an economic incentive to conform to the opinion of their 

supervisors. Therefore, one potential source of hidden profile is that individual employees tend to place 

a larger weight on existing public information than justified by its informational content when they report 

their opinions to upper level decision makers in corporate hierarchy. 

Prior literature argued that a prediction market can help alleviate the hidden profile effect—the 

overreaction of corporate decision making to existing public information (Abaramowicz and Henderson 

2007). The basic logic is as follows: In a corporate prediction market, employees would have incentives 

to correct the conformity and overreaction to public information, especially if they can trade 

anonymously. As highlighted by Bo Cowgill, a Google economic analyst, the anonymous trading system 

in prediction markets lets the Google hierarchy discover its employees’ uncensored opinions. “If you let 

people bet on things anonymously, they will tell you what they really believe because they have money 

at stake. This is a conversation that’s happening without politics. Nobody knows who each other is, and 
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nobody has any incentive to kiss up.”4 Consequently, the use of corporate prediction markets can help 

decision makers reduce the possibility that errors propagate through the hierarchy all the way to the top, 

as individual employees who dissent from an official report would have a financial incentive to trade 

against the official report. The market approach with the protection of anonymity gives a voice to internal 

employees who otherwise would be affected by hidden profiles or yes men due to various pressures or 

expected costs from speaking out. 

However, can a corporate prediction market completely solve the problem of overweighting 

public information? In this paper, we develop an analytical model of market trading to analyze the impact 

of information quality on prediction market performance. As defined in prior literature (Morris and Shin 

2002; Chen and Jiang 2006; Angeletos and Pavan 2007), we differentiate between two types of 

information within an organization according to the way the information is generated: (i) public 

information that is common to all prediction market participants, such as official company reports, and 

(ii) private information that can be accessed only by individual employees, such as tacit knowledge from 

their working experience. Although prediction market participants place individually optimal Bayesian 

weights on both public and private information in our model, we find that a prediction market can cause 

another type of hidden profile effect: The information-aggregation mechanism in a corporate prediction 

market will place a larger (less) than efficient weight on public (private) information. This result suggests 

that even if the effect of hidden profiles at the individual level can be corrected by a corporate prediction 

market, the information-aggregation mechanism (market mechanism) can be another source of the 

“hidden profile” effect (the problem of overweighting public information).  

A key assumption of our model is that a prediction market participant lacks the ability to extract 

other participants’ information from market prices. Because of this bounded rationality, a corporate 

prediction market will place a larger-than-efficient weight on public information. Essentially, our model 

                                                 
4 See http://www.networkworld.com/article/2284098/data-center/google-bets-on-value-of-prediction-markets.html.  

http://www.networkworld.com/article/2284098/data-center/google-bets-on-value-of-prediction-markets.html
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is different from the efficient market literature (Malkiel and Fama 1970) in how a competitive market 

serves to communicate information between the market participants. The classic efficient market 

assumption states that the equilibrium price aggregates all the available information in the market 

perfectly, and participants have unlimited cognitive abilities to process information (Malkiel and Fama 

1970; Grossman 1976, 1978). However, if the equilibrium price really aggregates all the available 

information perfectly as Grossman (1976, 1978) suggested, participants will neglect their own private 

information because it is useless. According to this logic, it is unclear why the price should reflect the 

private information in the first place (Hellwig 1980). A number of empirical studies in finance also show 

that a competitive market does not aggregate information as efficiently as we expect (Jensen 1978; 

Shiller 1981; Bondt and Thaler 1985). Our study relaxes the assumption that the equilibrium price 

aggregates information perfectly by introducing more realistic constraints on participants’ information-

processing abilities. 

Another key finding of our research is that increased precision of private information always 

enhances prediction market performance as expected, but, surprisingly, increased precision of public 

information is detrimental to the prediction market performance when public information is relatively 

noisy. An intuitive explanation is that the presence of public information might have a distortive effect 

on the prediction market price formation. All prediction market participants receive the same public 

information. As such, each participant will form her best guess according to her own private information 

as well as the same public information. In the process of aggregating all participants’ best guesses, a 

corporate prediction market mechanism will count the public information multiple times. Therefore, the 

aggregated prediction market forecast will overreact to the public information, and any noise contained 

in the public information will be magnified. 

More importantly, we uncover the specific mechanism through which the problem of 

overweighting the public information might be mitigated, which is an issue unaddressed by the extant 

literature. In particular, social interactions and information sharing among prediction market participants 
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may help correct the overreaction to public information. Actually, a distinct feature of a corporate 

prediction market versus a public prediction market, such as Iowa Electronic Markets (Berg et al. 2008), 

is that internal employees are more likely to be socially connected: They can exchange information with 

each other through personal networks and social relations, which are important conduits of knowledge 

(Qiu, Rui, and Whinston 2014a, b).5  

As social media technologies have grown explosively, employees are increasingly using public 

social media platforms such as Twitter, Facebook, and LinkedIn for work-related purposes (Parise, 

Whelan, and Todd 2015). Many companies, such as 7-Eleven, Capital One, and Dow Chemical, have 

developed their own in-house corporate platforms to promote social networking among employees 

(Mello 2014). Knowledge sharing in knowledge networks becomes much more common in today’s 

digitally connected world (Hansen 2002). Therefore, beyond a non-networked corporate prediction 

market with independent bettors, we examine a model of a socially embedded prediction market, in 

which participants can share information with their social connections.  

In our study, we highlight that public information is a double-edged instrument in a prediction 

market. It conveys information on the fundamentals of the asset traded in the prediction market, but on 

the other hand, the noisiness of public information can be enhanced in the prediction market due to the 

overreaction to the disclosure of public information. Corporate managers should be aware that increased 

precision of public information might have a detrimental effect on the aggregation of information into 

prediction market prices. Our results on socially embedded prediction markets further illustrate the 

complex interaction between private and public information. 

2  Literature Review 

The literature on prediction market design has been growing rapidly in recent decades (e.g. Guo, 

Fang, and Whinston 2006; Fang, Stinchcombe, and Whinston 2007, 2010; Berg, Neumann, and Rietz 

                                                 
5 As a philosophical matter, Google’s rule for managing knowledge workers is to pack people in tight, so they can share information (Cowgill, Wolfers, and 
Zitzewitz 2009).  
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2009; Healy et al. 2010; Van Bruggen et al. 2010; Jian and Sami 2012; Cowgill and Zitzewitz 2014). 

Most of these studies, explicitly or implicitly, assumed that prediction market participants are isolated 

in the sense that they cannot communicate their private information with each other. As we have stated, 

in a corporate internal prediction market, participants are more likely to be socially connected. Although 

a handful of recent empirical studies have begun considering socially embedded prediction markets 

(Cowgill, Wolfers, and Zitzewitz 2009; Qiu, Rui, and Whinston 2014a), analytical analysis is limited in 

this area. To bridge this research gap, our work provides a modeling framework to understand the role 

of information precision in a socially embedded prediction market, and to improve the design of 

corporate prediction markets.6 

Our work is more broadly related to the literature on the wisdom of crowds. An intriguing 

question is about the boundary conditions of crowd wisdom: When is a crowd wise? In an analytical 

model, Golub and Jackson (2010) showed that whether a crowd is wise depends critically on the structure 

of social networks. Lorenz et al. (2011) studied a forecast-report context in which the crowd prediction 

is a linear combination of all individuals’ predictions, and found experimental evidence that sharing 

information among individuals may undermine the wisdom of crowd effect. In a similar context, Davis-

Stober et al. (2015) demonstrated how to create optimal forecasting groups. In the context of expert-

systems design, Jiang, Mookerjee, and Sarkar (2005) considered a sequential information gathering 

problem in which input data may be distorted by system users. The optimal design of other smart systems, 

such as internal knowledge investment (Ba, Stallaert, and Whinston 2001), consumer contests (Liu, Geng, 

and Whinston 2007), consumer review systems (Jiang and Guo 2015) and dynamic electricity trading 

systems (Ketter et al. 2015, 2016), has also been widely examined in the literature. Our model focuses 

on a specific form of the wisdom of crowds—a prediction market in which the forecast is generated from 

                                                 
6  Jian and Sami (2012) differentiated two commonly used mechanisms of prediction markets—probability-report mechanism and security-trading 
mechanism. Qiu, Rui, and Whinston (2014a, b) mainly focused on the probability-report mechanism in a socially embedded prediction market using 
controlled laboratory experiments. The focus of our study is to derive analytical insights on the security-trading mechanism in a socially embedded prediction 
market, but we also show that our results are robust in a forecast-report mechanism in online appendix E. 
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market prices using a security-trading mechanism. 

Recent empirical studies in finance documented evidence that social networks play an important 

role in financial markets (Coval and Moskowitz 2001; Cohen, Frazzini, and Malloy 2008). A stream of 

analytical studies showed that social communications among traders improve market efficiency (Colla 

and Mele 2010; Ozsoylev and Walden 2011; Han and Yang 2013). Our work differs from theirs for two 

reasons. First, in our study, we focus on the role of public information in a non-networked prediction 

market versus a socially embedded prediction market. Although Han and Yang (2013) pointed out that 

increased precision of private information improves price informativeness, none of these studies have 

considered the detrimental effect of public information. Our analytical results complement their research 

and highlight that the effect of information precision on market efficiency depends on the way the 

information is generated. Increased precision of private information always enhances prediction market 

performance regardless of whether a social network is embedded, but increased precision of public 

information could be detrimental under some market conditions. Second, this stream of studies adopted 

the large economy analysis by assuming the number of market participants is infinity, and investigated 

the asymptotic properties of an equilibrium. This approach is well defined and valid in financial markets. 

However, unlike a financial market or a public prediction market, a thin market is an important feature 

of a corporate prediction market because of confidentiality reasons. There is often a need to limit 

participation for prediction topics with strategic importance (Cowgill and Zitzewitz 2014). Therefore, 

our model focuses on the case that the number of prediction market participants is limited. We 

demonstrate that the number of prediction market participants has a significant impact on when increased 

precision of public information is more likely to be detrimental.7 

Following the prior finance literature on difference of opinions (DO), in our model, we assume 

that prediction market participants do not condition on prices to infer private information of others. The 

                                                 
7 When the number of participants is large, our results can be applied to public prediction markets.  
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DO behavior can be explained by (i) behavioral biases such as bounded rationality and limited attention, 

or by (ii) heterogeneous priors among rational agents (Banerjee, Kaniel, and Kremer 2009; Banerjee and 

Kremer 2010). From a perspective of behavioral biases, Hong and Stein (1999) proposed a DO model 

to explain the momentum phenomenon in financial markets. Hong and Stein (2003) developed an 

analytical framework of market crashes based on difference of opinions among investors.8 Scheinkman 

and Xiong (2003) used overconfidence as a source of difference of opinions to examine speculative 

bubbles in asset prices. Banerjee, Kaniel, and Kremer (2009) showed that difference of opinions is 

necessary to generate price drift, which is an empirical regularity in financial markets.  

From a perspective of heterogeneous priors, early studies used the DO approach to avoid the No 

Trade theorem resulting from rational expectations, and to generate positive trading volume in analytical 

models (Harrison and Kreps 1978; Harris and Raviv 1993; Kandel and Pearson 1995). They 

demonstrated that DO can generate trading patterns consistent with stylized empirical evidence. Cao and 

Ou-Yang (2009) analyzed the effects of DO on the dynamics of trading volume in stocks. Banerjee and 

Kremer (2010) developed a dynamic DO model to generate positive autocorrelation in trading volume.  

Our paper differs from the prior DO studies in several aspects. First, the previous DO literature 

has mainly focused on using DO to explain a number of empirical features of price and volume dynamics 

in financial markets, such as momentum and positive autocorrelation in trading volume. However, our 

paper focuses on prediction market accuracy—more specifically, the impact of public information on 

prediction market accuracy in the DO framework. Second, a few studies have noticed that the problem 

of overweighting public information can be caused by the DO framework, and the overweight issue is 

the underlying driving force of some empirical regularities in financial markets, such as price drift (e.g. 

Banerjee, Kaniel, and Kremer 2009). However, as far as we know, none of these studies have examined 

the following key results on the optimal design of prediction markets in our work: (i) increased precision 

                                                 
8 In their model, each investor receives a private signal, and each investor’s signal contains some useful information. However, each cognitively overloaded 
investor only pays attention to her own signal, even if other investors’ signals are revealed in prices. 



12 
 

of public information is not always beneficial to prediction market accuracy and can be detrimental when 

public information is relatively noisy; (ii) social networks among employees help correct the problem of 

overweighting public information and improve prediction market accuracy; (iii) the social network, 

however, has a side effect. As the level of social interaction increases, increased precision of public 

information may be more likely to be detrimental under some market conditions; and (iv) although social 

interactions can correct the overweighting problem, the homophily effect (the errors of friends’ private 

signals are positively correlated) tends to weaken the correction because friends’ information is less 

useful under homophily.  

Our study is also related to social psychology literature on hidden profiles. The implication from 

the prior psychology experiments is that individuals tend to attach a larger weight to shared common 

information than justified by its informational content in their decision-making process (Stasser and 

Titus 1985; Stasser and Titus 2003). A stream of economics literature on the role of public information 

(Morris and Shin 2002; Angeletos and Pavan 2007) found a similar result when individuals have 

coordination motives using analytical models.9 Instead of focusing on the effect of hidden profiles in 

the individual level, our model digs deeper into the overweighting problem of the information-

aggregation mechanism (the effect of hidden profiles) in prediction markets: Even if there is no distortion 

in the individual level, the problem of overweighting the public information can be caused by the 

prediction market mechanism itself. In our model, the social value of network communications is to 

alleviate the overreaction of prediction market prices to the public information. 

3  A Benchmark Non-Networked Prediction Market 

                                                 
9 The underlying mechanism that leads to the overweight issues in our paper is different from that in the prior literature. It is important to note that the 
context of Morris and Shin (2002) is a stylized coordination game: In each individual’s utility function, there is a “beauty contest” term. It means that each 
individual’s utility depends on the average level of actions of others. Essentially, this beauty contest term is the driving force of the overweight issues. Our 
model is a market setup, which is different from Morris and Shin (2002). More importantly, there is no “beauty contest” term in the utility function of 
prediction market participants. The driving force of the overweight issues is that the information-aggregation mechanism in prediction markets places a 
larger than efficient weight on public information. As far as we know, very few studies have looked at the overweight issues caused by the market aggregation 
mechanism, and our paper is the first to examine the inefficient multiple counting of public information in a market context (prediction market). Additionally, 
the prior literature on the overweight issues of public information (e.g. Morris and Shin 2002) has mainly focused on social welfare from a social planner’s 
perspective. Increased precision of public information may be detrimental to social welfare. In this paper, we focus on the impact of public information on 
the overall prediction market performance instead of the total welfare of prediction market participants.  
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3.1  Model Setup 

In a corporate prediction market, assets are created whose final value is tied to a particular 

event—for example, the sale of a new product. People trade the assets according to their forecasts. More 

specifically, in our model, people trade a single asset according to the outcome of a future random 

variable, 𝑉𝑉 . A manager wants to forecast 𝑉𝑉 , and she resorts to 𝑛𝑛  prediction market participants 

(internal employees) to obtain an accurate prediction. Table 1 provides a list of the notations used in our 

model. 

All the prediction market participants share a common prior on 𝑉𝑉, given by: 

 𝑉𝑉~𝑁𝑁(𝑉𝑉0, 1/𝜌𝜌𝑉𝑉), 

where 𝑉𝑉0 is the mean of the prior, and 𝜌𝜌𝑉𝑉 is the precision of the prior. Before the prediction market 

opens, each participant can access a private signal: 

 𝑆𝑆𝑖𝑖 = 𝑉𝑉 + 𝜀𝜀𝑖𝑖, 𝜀𝜀𝑖𝑖~𝑁𝑁(0,1/𝜌𝜌𝜀𝜀), 𝜀𝜀𝑖𝑖 ⊥ 𝜀𝜀𝑗𝑗 , (1) 

where 𝜌𝜌𝜀𝜀 is the precision of participant 𝑖𝑖’s information source for 𝑖𝑖 = 1,2, . . . ,𝑛𝑛.10 The signals’ errors 

𝜀𝜀1, . . . , 𝜀𝜀𝑛𝑛 are independent across participants and are also independent of 𝑉𝑉. In this non-networked 

benchmark model, we assume that each participant accesses a private independent signal and does not 

communicate with each other. 11  Then, in later sections, we relax this assumption, and allow 

communication among friends and correlated private signal errors (homophily).12 

Table 1. Summary of Notations 
Notation Description  

                                                 
10 We assume that the precisions of all participants’ private information are equal. It implies that no one is especially well informed, and that the valuable 
information is not concentrated in a very few hands. Our result is robust when we consider two groups of participants with heterogeneous precisions of 
private information (experts and ordinary participants). The simulation analysis can be found in online Appendix D. We also assume that the acquisition of 
private information is costless. Qiu et al. (2014a) investigated a model of costly information acquisition in prediction markets and found that the more friends 
a participant has, the less willing she is to acquire information. 
11 Our non-networked benchmark model is more like a public prediction market that has been widely studied in the literature. In public prediction markets 
(Berg and Rietz 2003; Berg et al. 2008, Foutz and Jank 2010), participants are assumed to be isolated: They receive bits and pieces of independent information 
and cannot communicate with each other. The reason is that in public prediction markets, participants are anonymous traders, and typically they don’t know 
each other.  
12 It is worth noting that a rising share of employees now regularly engages in working from home, especially in the tech industry (Bloom et al. 2015). A 
byproduct of working from home is that the adoption of working from home may significantly reduce the intensity of social interactions among employees, 
and hence weaken communication within an organization. In our specific context, the rising practice of working from home may make corporate prediction 
market participants much more isolated than before. If a significant portion of prediction market participants works from home, employees are less likely to 
discuss and share information during coffee break or lunch time. Empirical evidence shows that the share of managers in the United States, the United 
Kingdom, and Germany allowed to work from home during normal hours is almost 50%. Working from home is also becoming increasingly common in 
developing countries because of rising traffic congestion and the spread of laptops and cell phone connectivity (Bloom et al. 2015). 
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𝑉𝑉 A random future event that will be forecasted in a corporate prediction market 
𝑆𝑆𝑖𝑖 Each individual’s private signal  
𝜀𝜀𝑖𝑖 The noise contained in the private signal 
𝑉𝑉0 The mean of the common prior (public information) 
𝜌𝜌𝑉𝑉 The precision of public information 
𝜌𝜌𝜀𝜀 The precision of private information 
𝑛𝑛 The number of prediction market participants  
𝑥𝑥𝑖𝑖 Each individual’s trading position in a prediction market  
𝜋𝜋𝑖𝑖 Each individual’s trading profits     
𝐼𝐼𝑖𝑖 Each individual’s information set 
𝑘𝑘 The number of friends each participant has in a regular network 
𝑎𝑎0 The proportion of degree 0 participants  

𝑁𝑁𝑖𝑖(𝑔𝑔) The set of individual i’s friends  
𝛾𝛾 Risk averse parameter 
𝛿𝛿 Correlation coefficient under homophily  
m The number of participants that use the DO approach to make inferences 

 

We provide a running example of corporate prediction markets to show how our model setups 

are tied to reality, as follows: In the business practice, the random variable 𝑉𝑉 could refer to the next 

month’s sales of a product or the following quarter’s monthly sales of a product (Chen and Plott 2002). 

In Google or Ford, there is a prediction market associated with every event they are trying to predict, 

such as the growth rate of Gmail users in Google (Cowgill, Wolfers, and Zitzewitz, 2009) or sales 

volumes for selected Ford models (Montgomery et al. 2013).  

The common prior can be interpreted as the existing public information available to prediction 

market participants. Many projects at Google had “dashboards,” or online summaries of project status. 

These dashboards are typically visible to all Google employees and can be treated as public information. 

If Google contains a prediction market related to a project that has a dashboard, the prediction market 

webpage includes a link to the dashboard (Coles, Lakhani, and McAfee 2007). Actually, many high-tech 

companies use dashboards to track project status. Private signals reflect the diverse information that can 

be assessed by internal employees in their daily work. For instance, if data analysts in a company’s 

marketing department are asked to predict future sales of a product, they may have different information 

sources from their working experience.13 The private signal in Google’s prediction markets refers to 

                                                 
13 The focus of this study is to examine the impact of information precision on prediction market performance. Therefore, we follow the prior literature 
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information only available to a small number of individuals or personal interpretations. For instance, a 

manager on the search quality team in Google mentioned that she had private information when a 

prediction market was related to her own projects. Another Google prediction market participant said: 

“the one time I thought I had good (private) information on a Google project, where there was a market 

I traded like crazy on it.” (Coles, Lakhani, and McAfee 2007, page 12).  

In a competitive security-trading prediction market, participants trade anonymously, taking 

prices as given. Participant 𝑖𝑖’s profits are given by 𝜋𝜋𝑖𝑖 = (𝑉𝑉 − 𝑃𝑃)𝑥𝑥𝑖𝑖 , where 𝑃𝑃 is the prediction market 

price of the risky asset tied to 𝑉𝑉, and 𝑥𝑥𝑖𝑖 is the demand for the security of participant 𝑖𝑖. If 𝑥𝑥𝑖𝑖 > 0, 

participant 𝑖𝑖 holds a positive position in the risky asset; if 𝑥𝑥𝑖𝑖 < 0, participant 𝑖𝑖 shorts the risky asset. 

We further assume that participant 𝑖𝑖’s preferences over random profits are described by a mean-variance 

utility function, which has been widely adopted in the economics and finance literature (Levy and 

Markowitz 1979; Aid et al. 2011). Therefore, participant 𝑖𝑖 is risk averse, and her utility depends on the 

expected profits as well as the variance of the random profits:  

 𝐄𝐄[𝜋𝜋𝑖𝑖] − 𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕[𝜋𝜋𝑖𝑖], (2) 

where 𝛾𝛾 is a parameter that captures the risk aversion of participants. If 𝛾𝛾 is larger, participants are 

more risk averse. Following the finance literature (e.g. Cespa and Vives 2015), we assume all 

participants share the same risk aversion parameter 𝛾𝛾 to simplify the calculation.  

Our benchmark model is a two-date static model. Following the standard timeline setup in the 

finance literature (Grossman and Stiglitz 1980; O'hara 1995; Banerjee, Kaniel, and Kremer 2009; Cespa 

and Vives 2015), we describe the timeline of our model as follows. At time 1, prediction market 

participants receive private signals and trade the risky asset. The market price of the asset and the trading 

position of each individual are simultaneously determined. At time 2, the random variable 𝑉𝑉  is 

realized.14 

                                                 
(Morris and Shin 2002; Chen and Jiang 2006; Angeletos and Pavan 2007) and assume that both private and public signals are unbiased. 
14 Following the finance literature (Grossman and Stiglitz 1980), we use the way modeling financial markets to model prediction markets. The reason is 
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According to equation 2, participant 𝑖𝑖’s optimization problem of choosing the optimal quantity 

becomes: 

 max 
𝑥𝑥𝑖𝑖

𝐄𝐄[(𝑉𝑉 − 𝑃𝑃)𝑥𝑥𝑖𝑖|𝐼𝐼𝑖𝑖] − 𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕[(𝑉𝑉 − 𝑃𝑃)𝑥𝑥𝑖𝑖|𝐼𝐼𝑖𝑖], (3) 

where 𝐼𝐼𝑖𝑖 is the information set of participant 𝑖𝑖. The first order condition (F.O.C) yields: 

 𝑥𝑥𝑖𝑖∗ = 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖]−𝑃𝑃
2𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖]

. (4) 

 In the prior finance literature, there are two major paradigms for modeling inference process in 

financial markets (what the information set 𝐼𝐼𝑖𝑖 should contain): rational expectation equilibrium (REE) 

and DO. Both approaches share the view that investors have different valuations, and prices aggregate 

the different views during the trading process. The difference between the REE and DO models is in the 

information set of participants, 𝐼𝐼𝑖𝑖. “In an REE, an agent conditions both on the private signal and the 

price vector. In the DO model, however … each agent conditions only on his or her private signal” 

(Banerjee, Kaniel, and Kremer 2009, pp. 3712). More specifically, the REE approach implies that 

participants are able to learn from the price: the quantity they demand for a given price depends on the 

information the price reveals about the value of the asset (Grossman and Stiglitz 1980; O'hara 1995; 

Cespa and Vives 2015). The information set under REE should include the private signal as well as the 

expected price, 𝐼𝐼𝑖𝑖 = {𝑆𝑆𝑖𝑖,𝑃𝑃∗} . In contrast, the DO approach assumes that participants are not as 

sophisticated as REE participants, and they do not learn from the information contained in market price. 

The information set under DO includes only the private signal, 𝐼𝐼𝑖𝑖 = {𝑆𝑆𝑖𝑖}.  

In Section 3.2, we look at a pure DO model where all participants do not learn from the 

information contained in market price. The reality of corporate prediction markets is likely to be neither 

as efficient as in an REE nor as inefficient as in a pure DO equilibrium, but somewhere in between. 

Therefore, in Section 3.3, we develop a mixture model that nests both the REE and DO approaches: 

                                                 
that most successful prediction markets, such as prediction market in Google and Ford (Coles, Lakhani, and McAfee 2007; Montgomery et al. 2013), are 
very similar to stock markets: “they contained securities, each of which had a price. People used the market to trade with one another by buying and selling 
these securities (Coles, Lakhani, and McAfee 2007, p. 1). 
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among total n participants, m participants use the DO approach to make inferences (they do not learn 

from the expected price), and n – m participants use the REE approach to make inferences (they are 

sophisticated traders and learn from the expected price). This modeling setup captures the heterogeneity 

of participants in cognitive capabilities. If 𝑚𝑚 = 𝑛𝑛, the model converts to a pure DO model; if 𝑚𝑚 = 0, 

the model converts to a pure REE model.  

3.2  A DO Model of a Non-Networked Prediction Market 

We first look at a pure DO model of prediction markets for two reasons. First, as documented in 

the prior literature (Banerjee, Kaniel, and Kremer 2009), the appeal of DO models is that the predictions 

from DO models are consistent with real-world empirical evidence in financial markets. For instance, a 

typical feature of REE in financial markets is the No Trade theorem (Tirole 1982): no trader expects a 

positive monetary gain from his trade; thus, the trading volume is zero. The intuition of this theorem is 

that in the REE framework (traders are completely rational), if one participant has information that 

induces her to want to trade at the current asset price, then other rational participants would be unwilling 

to trade with her, because they realize that she must have superior information. The no-trade result 

derived from the REE framework is not consistent with the empirical evidence observed in real-world 

corporate prediction markets (Montgomery et al. 2013; Cowgill and Zitzewitz 2014): Participants 

actively trade in corporate prediction markets. In contrast, the DO models do not generate the no-trade 

result and are consistent with the observed evidence. The empirical literature in financial markets 

(Banerjee and Kremer 2010) has documented that a number of regularities on observed levels and 

patterns of trading volume are difficult to reconcile in standard REE models (even in noisy REE models). 

In contrast, the DO framework appears better suited to address the empirical evidence involving trading 

volume (Banerjee and Kremer 2010). More broadly, Lovell (1986) summarized a number of empirical 

studies challenging the validity of rational expectation hypothesis in contexts other than financial 

markets.  

Second, prediction market participants in our context are corporate employees, not professional 
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traders in financial markets. For instance, an active trader in Google’s prediction markets admitted: “I 

never play the real-world stock market.” (Coles, Lakhani, and McAfee 2007, p. 12). Therefore, they may 

not be as sophisticated as professional traders who can learn from the information contained in the 

expected price. Essentially, REE requires extraordinary analytical and computational capabilities for a 

fully rational approach. It is highly impractical and cognitively demanding for non-professional traders 

in prediction markets to learn from the information contained in the expected price and to do the required 

calculations. The DO paradigm can be motivated by behavioral biases, such as bounded rationality 

(Banerjee and Kremer 2010), and this approach is more appropriate in our corporate prediction market 

context.  

In a pure DO model, each participant makes a Bayesian inference using her private signal and 

the common prior:  

 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝐄𝐄[𝑉𝑉|𝑆𝑆𝑖𝑖] = 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + 𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖, 𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖] = 1/(𝜌𝜌𝜀𝜀 + 𝜌𝜌𝑉𝑉).  

Essentially, participant 𝑖𝑖’s conditional expectation, 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖], is a weighted average of the prior mean 

and her private signal. Note that 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

 is the Bayesian weight given to public information, and 𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

 

is the weight given to private information. We close the model by imposing the market clearing condition, 

which determines the prediction market price 𝑃𝑃: ∑𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖∗ = 0, where 𝑛𝑛 is the number of participants 

in the prediction market. The market clearing condition simply means that the sum of each participant’s 

position should be equal to zero. We assume 𝑛𝑛 is a limited number. However, our model can be easily 

extend to the case of 𝑛𝑛 → ∞. 

We characterize the benchmark equilibrium without social networks when participants are 

allowed to trade assets in a competitive prediction market in the following proposition. All the proofs 

can be found in online Appendix A. 

Proposition 1 (Prediction Market Equilibrium without Social Networks) In a non-networked 

prediction market, the equilibrium prediction market price is given by 
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𝑃𝑃∗ = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝜌𝜌𝑉𝑉

𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉0 + 1

𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1

𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖  

= 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + 𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉 + 𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝜀𝜀, 

where 𝜀𝜀 = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝜀𝜀𝑖𝑖, and the equilibrium position for each participant is 𝑥𝑥𝑖𝑖∗ = 𝜌𝜌𝜀𝜀(𝜀𝜀𝑖𝑖−𝜀𝜀)

2𝛾𝛾
.  

The market price 𝑃𝑃∗ is the forecast/estimator generated from the prediction market. Proposition 

1 shows the information aggregation mechanism of a prediction market where 𝑃𝑃∗ reflects participants’ 

diverse expectations, 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖]. According to the equation 𝑃𝑃∗ = 𝜌𝜌𝑉𝑉

𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉0 + 1

𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1

𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖, the 

information-aggregation mechanism places weights on the public information and each individual’s 

private information. The weight on the public information in a non-networked prediction market is given 

by: 

 𝑊𝑊𝑁𝑁𝑃𝑃 = 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

/ � 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

+ 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1

𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

� = 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

. (5) 

A natural question arises: what is the socially efficient weight on the public information? Suppose that 

we have an ideal scenario. The corporate manager can perfectly assess all prediction market participants’ 

private information without relying on a corporate prediction market. Then, the corporate manager’s best 

guess is her conditional expectation of 𝑉𝑉, which is a weighted average of the public information and all 

private signals: 

 𝑃𝑃𝑚𝑚 = 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑚𝑚] = 𝜌𝜌𝑉𝑉
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + ∑𝑛𝑛
𝑖𝑖=1

𝜌𝜌𝜀𝜀
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖, 

where 𝐼𝐼𝑚𝑚 is the managers’ information set. Therefore, the efficient weight on the public information 

(first best) is: 

𝑊𝑊𝑚𝑚 = 𝜌𝜌𝑉𝑉
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

/ � 𝜌𝜌𝑉𝑉
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

+ ∑𝑛𝑛
𝑖𝑖=1

𝜌𝜌𝜀𝜀
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

� = 𝜌𝜌𝑉𝑉
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

.                  (6) 

Comparing equation 6 with equation 5, we find that 𝑊𝑊𝑁𝑁𝑃𝑃 ≥ 𝑊𝑊𝑚𝑚, which implies that the weight 

on the public information in a non-networked prediction market is larger than the efficient weight. This 

shows that the problem of overweighting the public information still exists in a corporate prediction 
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market. 

Following the prior literature (Lamberson and Page 2012; Davis-Stober et al. 2015), we use the 

mean squared error (MSE) to measure the prediction market performance or prediction accuracy. The 

MSE of an estimator measures the average of the squares of the “errors.” The larger the MSE is, the less 

accurate the forecast generated from the prediction market is. In a non-networked prediction market, the 

MSE of the forecast 𝑃𝑃∗ is given by: 

 MSE(𝑃𝑃∗) = 𝐄𝐄[(𝑉𝑉 − 𝑃𝑃∗)2] = 𝜌𝜌𝑉𝑉
(𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉)2 + 𝜌𝜌𝜀𝜀

𝑛𝑛(𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉)2, (7) 

and the MSE in the ideal scenario in which the manager can assess all prediction market participants’ 

private information is: 

 MSE(𝑃𝑃𝑚𝑚) = 𝐄𝐄[(𝑉𝑉 − 𝑃𝑃𝑚𝑚)2] = 1
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

≤ MSE(𝑃𝑃∗). (8) 

From equation 7, we have the following proposition: 

Proposition 2 (Comparative Statics on MSE) In a non-networked prediction market, the MSE of the 

forecast 𝑃𝑃∗  decreases with the number of prediction market participants, 𝑛𝑛 , and the precision of 

private signals, 𝜌𝜌𝜀𝜀 . If 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 𝑛𝑛−2

𝑛𝑛
, the MSE increases with the precision of the common prior (public 

information); if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

> 𝑛𝑛−2
𝑛𝑛

, the MSE decreases with the precision of public information.  

The implications of this proposition are as follows. First, the result of comparative statics of 𝑛𝑛 

on MSE is straightforward and consistent with our intuition. The prediction market accuracy increases 

with the number of participants. This result is reminiscent of the power of the wisdom of crowds: “Under 

the right circumstances, groups are remarkably intelligent, and are often smarter than the smartest people 

in them” (Surowiecki 2004, page 41). The prediction errors are cancelled out when the number of 

participants is large. If 𝑛𝑛 → ∞, the MSE converges to 𝜌𝜌𝑉𝑉/(𝜌𝜌𝜀𝜀 + 𝜌𝜌𝑉𝑉)2. 

More importantly, we find that in a non-networked prediction market, increased precision of 

private information always enhances the prediction market accuracy. However, the impact of the public 
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information precision is intriguing: When the precision of public information, 𝜌𝜌𝑉𝑉, is relatively large to 

the precision of private information, 𝜌𝜌𝜀𝜀, greater precision of the public information increases prediction 

market accuracy. However, when 𝜌𝜌𝑉𝑉 is relatively small to 𝜌𝜌𝜀𝜀, greater precision of public information 

is detrimental to prediction market accuracy. 

In a prediction market with a very large number of participants (𝑛𝑛 → ∞), our result can be 

simplified as follows: If 𝜌𝜌𝑉𝑉 ≥ 𝜌𝜌𝜀𝜀, the MSE decreases with 𝜌𝜌𝑉𝑉; if 𝜌𝜌𝑉𝑉 < 𝜌𝜌𝜀𝜀, the MSE increases with 𝜌𝜌𝑉𝑉. 

This result is surprising in the sense that when we consider each participant’s decision making problem, 

more precise information is generally beneficial to the participant no matter whether the information is 

private (available only to participant 𝑖𝑖) or public (shared by all participants). However, it is not always 

the case that greater precision of the public information is desirable in terms of prediction market 

performance. 

The key insight from our model is that increased precision of public information is beneficial 

only when it is precise. The underlying intuition is in line with the overweighting effect documented in 

the extant literature (Morris and Shin 2002; Angeletos and Pavan 2007). In our prediction market, the 

public information conveys useful information on the uncertain event, 𝑉𝑉. On the other hand, everyone 

receives the same public information. The detrimental impact arises from the fact that the information-

aggregation mechanism places a larger-than-efficient weight on the public information: 𝑊𝑊𝑁𝑁𝑃𝑃 ≥ 𝑊𝑊𝑚𝑚. 

More specifically, when each participant forms her expectation of the uncertain event, 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖], she will 

give certain weight to the public information as her best guess. Then, the prediction market aggregates 

all participants’ expectations using a security-trading mechanism. Since every participant gives certain 

weight to the public information, the prediction market forecast will overreact to the public information 

because the public information is counted multiple times. Any noise contained in the public information 

will be magnified by overweighting the public information. Therefore, when the public information is 

less precise, we are more likely to observe that greater precision of public information lowers the 
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prediction market accuracy. Note that the impact of increased precision of public information in a non-

networked prediction market is given by:  

 ∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) = (𝑛𝑛−2)𝜌𝜌𝜀𝜀
𝑛𝑛(𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉)3�����
Detrimental

 Effect

− 𝜌𝜌𝑉𝑉
(𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉)3�����
Beneficial

 Effect

, (9) 

where the first term indicates the detrimental effect of public information on the prediction market 

performance due to the overweighting problem, and the second term indicates the beneficial effect of 

public information since it conveys useful information about 𝑉𝑉. The impact of increased precision of 

the public information depends on the relative strength of these two effects. 

Our following numerical example further illustrates the implications of Proposition 2 and gives 

a visualization of the regions of 𝜌𝜌𝑉𝑉 and 𝜌𝜌𝜀𝜀, for which the prediction market accuracy measured by the 

MSE is increasing or decreasing in 𝜌𝜌𝑉𝑉. In this numerical example, we set the number of prediction 

market participants, 𝑛𝑛 = 50. The results are robust when we vary 𝑛𝑛. Figure 1(a) displays the MSE for 

different values of the precisions of private information and public information. Figure 1(b) depicts the 

contour lines of the MSE. The whole region in Figure 1(b) can be divided by the marginal line 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

=

𝑛𝑛−2
𝑛𝑛

= 48
50

. In Region I, greater precision of the public information increases the prediction market 

accuracy. However, in Region II, greater precision of the public information is detrimental to prediction 

market accuracy. 
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Figure 1. The Impact of Public Information and Private Information on Prediction Market Performance (Non-

Networked Case), 𝑛𝑛 = 50. 

Figure 2 shows how the number of participants affects the size of Region II. The dotted line is 

𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 1
3
, which corresponds to 𝑛𝑛 = 3. Similarly, the solid and dashed lines represent 𝜌𝜌𝑉𝑉

𝜌𝜌𝜀𝜀
= 8

10
 and 𝜌𝜌𝑉𝑉

𝜌𝜌𝜀𝜀
=

48
50

, respectively. As the number of participants increases, the marginal line will move up and converge 

to 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 1. In other words, when the number of participants is larger, increased precision of public 

information is more likely to be detrimental—that is, Region II is larger, and Region I is smaller. If 𝑛𝑛 =

3, the condition for a detrimental effect of the public information is 𝜌𝜌𝜀𝜀 ≥ 3𝜌𝜌𝑉𝑉. If 𝑛𝑛 = 50, the condition 

for a detrimental effect of the public information is 𝜌𝜌𝜀𝜀 ≥
25
24
𝜌𝜌𝑉𝑉. More generally, we have the following 

proposition: 

Proposition 3 In a non-networked prediction market, increased precision of public information is more 

likely to be detrimental to the prediction market performance as 𝑛𝑛 increases.  

The intuition of Propostion 3 can be derived by examining equation 9. The beneficial effect in 

equation 9 does not depend on 𝑛𝑛 , but the detrimental effect increases with 𝑛𝑛 . Actually, the 

overweighting problem becomes more serious as 𝑛𝑛 increases. From equations 5 and 6, we find that the 

weight difference, 𝑊𝑊𝑁𝑁𝑃𝑃 −𝑊𝑊𝑚𝑚, increases with 𝑛𝑛. Therefore, increased precision of public information 
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is more likely to be detrimental to the prediction market performance as 𝑛𝑛 increases. Note that in the 

practice of corporate prediction markets, the number of participants typically varies from 20 to 50 or 

even larger (Chen and Plott 2002). When 𝑛𝑛 = 20, the condition for a detrimental effect of the public 

information is 𝜌𝜌𝜀𝜀 ≥
10
9
𝜌𝜌𝑉𝑉. It means that whenever the precision of the private signal is greater than 

10/9 of the precision of the public information, prediction market accuracy is decreasing in 𝜌𝜌𝑉𝑉. This 

condition is likely to hold in reality because corporate prediction market participants are internal 

employees, and they may have more precise insider information (private signals) than the public 

information (Qiu, Rui, and Whinston 2014b). 

 
Figure 2. The Impact of the Number of Prediction Market Participants 

In summary, in the corporate prediction market design, the number of participants is critical not 

because it can directly affect the prediction market performance. According to equation 7, the marginal 

beneficial effect of prediction market size decreases as 𝑛𝑛 increases. Prior empirical studies have also 

confirmed that the marginal beneficial effect of prediction market size on prediction market accuracy is 

small when the number of participants exceeds 20 (McHugh and Jackson 2012). The real reason why 

we should care about 𝑛𝑛 is its impact on the condition for a detrimental effect of the public information: 

𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 𝑛𝑛−2

𝑛𝑛
. Proposition 2 can inform managers the market conditions under which increased precision of 

public information is not beneficial. In the design of a corporate prediction market, managers should 
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exercise caution in how much and how precise the public information they reveal. When the public 

information is relatively noisy, revealing more precise public information to prediction market 

participants may hurt prediction market accuracy. 

3.3  A Mixture Model of REE and DO 

We develop a mixture model that nests both the REE and DO approaches where, among total n 

participants, m participants use the DO approach to make inferences, and n – m participants use the REE 

approach to make inferences. We denote the set of DO traders as 𝐶𝐶𝐷𝐷𝐷𝐷, which contains m partcipants. 

The rest n – m participants are REE traders. A DO trader 𝑖𝑖 ∈ 𝐶𝐶𝐷𝐷𝐷𝐷 makes a Bayesian inference using her 

private signal and the common prior, as described in Section 3.2.  

If participant 𝑖𝑖 is an REE trader, then her information set 𝐼𝐼𝑖𝑖 is her private signal 𝑆𝑆𝑖𝑖 as well as 

the price function 𝑃𝑃∗(𝑉𝑉). We denote the set of REE traders as 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅, which contains n - m partcipants. 

The central tenet of the REE literature (Grossman and Stiglitz 1980; Kyle 1985; O'hara 1995) is that the 

market price is a function of the fundamental value 𝑉𝑉. Hence, a fully rational consumer is able to learn 

from the price function 𝑃𝑃∗(𝑉𝑉). Intuitively speaking, 𝑃𝑃∗(𝑉𝑉) is self-fulfilling: When participants think 

prices as being generated by 𝑃𝑃∗(𝑉𝑉), they will act in such a way that the market clears at 𝑃𝑃∗(𝑉𝑉). 

Mathemetically speaking, it is essentially a fixed-point problem. Following the finance and economics 

literature (Grossman and Stiglitz 1980; Kyle 1985; O'hara 1995), we solve the fixed-point problem by 

assuming that an REE particpant forms a linear conjecture on the equlibrium price function: 

𝑃𝑃∗(𝑉𝑉) = 𝑎𝑎 + 𝑏𝑏𝑉𝑉 + 𝑐𝑐𝜀𝜀, 

where 𝜀𝜀 = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝜀𝜀𝑖𝑖, and a, b, and c are three constants to be dertermined. Recall that for both types of 

traders, the optimal trading position is given by equation 4. Using the market clearing condition, 

∑ 𝑥𝑥𝑖𝑖∗𝑖𝑖∈𝐶𝐶𝐷𝐷𝐷𝐷 + ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 = 0, we obtain the following proposition: 

Proposition 4 (Prediction Market Equilibrium with both DO and REE Traders) In a prediction 

market with both DO and REE traders, the equilibrium prediction market price is given by 
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𝑃𝑃∗ = 𝑎𝑎 + 𝑏𝑏𝑉𝑉 + 𝑐𝑐𝜀𝜀, 

where 𝑎𝑎 = 𝜌𝜌𝑉𝑉
(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0, and  𝑏𝑏 = 𝑐𝑐 = (𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀
(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

.  

From Proposition 4, we find that the weight on public information in a market with both DO and 

REE traders is 𝜌𝜌𝑉𝑉
(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

. From equation 6, the socially efficent weight is 𝜌𝜌𝑉𝑉
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

. When there is 

more than one DO trader (i.e., 𝑚𝑚 > 1), the problem of overweighting the public information still exists 

in a prediction market with both DO and REE traders, and the overweighting problem is most serious 

when all prediction market participants are DO traders, 𝑚𝑚 = 𝑛𝑛. We also compute the MSE of 𝑃𝑃∗ in a 

prediction market with both DO and REE traders: 

MSE(𝑃𝑃∗) = 𝐄𝐄[(𝑉𝑉 − 𝑃𝑃∗)2] = 𝜌𝜌𝑉𝑉
[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 + 𝜌𝜌𝜀𝜀(𝑛𝑛+1−𝑚𝑚)2

𝑛𝑛[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2. 

Note that when 𝑚𝑚 = 𝑛𝑛, the MSE above will convert to the MSE in a prediction market where all 

participants are DO traders. Based on the MSE, we obtain the following two proposistions.  

Proposition 5 In a prediction market with both DO and REE traders, when 𝑚𝑚 ≥ 1, the MSE of the 

forecast 𝑃𝑃∗ increases with the number of DO traders, m.  

This propostion is consistent with our explanations on the overweight problem of public 

information. As the number of DO traders increases, the problem of overweighting public information 

will become more serious, and hence the prediction market performance will decrease (the MSE will 

increase).   

Proposition 6 (Comparative Statics on MSE) In a prediction market with both DO and REE traders, 

the MSE of the forecast 𝑃𝑃∗ decreases with the number of prediction market participants, 𝑛𝑛, and the 

precision of private signals, 𝜌𝜌𝜀𝜀. When 𝑚𝑚 ≤ 𝑛𝑛+2
2

, the MSE of the forecast 𝑃𝑃∗ always decreases with the 

precision of public information. When 𝑚𝑚 > 𝑛𝑛+2
2

, if  𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ (2𝑚𝑚−2−𝑛𝑛)(𝑛𝑛+1−𝑚𝑚)

𝑛𝑛
, the MSE increases with the 

precision of public information; and if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

> (2𝑚𝑚−2−𝑛𝑛)(𝑛𝑛+1−𝑚𝑚)
𝑛𝑛

, the MSE decreases with the precision of 
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public information.  

The results in a prediction market that consists of both DO and REE traders are similar to those 

in a prediction market that consists of only DO traders. Increased number of participants and increased 

precision of private information always enhance prediction market accuracy; however, the impact of 

public information precision is conditional on the number of DO traders, 𝑚𝑚. If 𝑚𝑚 > 𝑛𝑛+2
2

 , the impact 

of the public information precision depends on the precisions of private and public information. 

As we have shown in Proposistions 4, 5, and 6, the key analytical results in the model that nests 

both the REE and DO approaches are qualitatively similar to those in a pure DO model: (i) the public 

information is overweighted, and (ii) increased precision of public information is not always beneficial 

to prediction market perforamance. In the reminder of the paper, analyzing a socially embedded 

prediction market, we will focus on the pure DO model because the model nesting both the REE and DO 

approaches complicates our analyses and does not add additional analytical insights.  

4  A Socially Embedded Prediction Market 

In this section, we examine the impact of information exchange in social networks on the 

prediction market performance in a pure DO framework. In our benchmark model, participants are 

isolated in the sense that they receive conditionally independent private information and cannot 

communicate with each other. However, in real corporate prediction markets, participants may receive 

information from each other in different forms (Qiu, Rui, and Whinston 2014a). For instance, they may 

chat about their prediction tasks during their coffee breaks. Cowgill, Wolfers, and Zitzewitz (2009) found 

correlated tradings among employees who sit within a few feet of one another and employees with social 

or work relationships in Google’s prediction markets, which suggest that prediction market participants 

may share private information with their social connections. More specifically, in our socially embedded 

prediction markets, each participant receives a private signal and exchanges information with their 

friends in a social network. The social network Γ = (𝑁𝑁, 𝐿𝐿) is given by a finite set of nodes 𝑁𝑁 =
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{1,2, . . . ,𝑛𝑛} and a set of links 𝐿𝐿 ⊆ 𝑁𝑁 × 𝑁𝑁. Each node represents a participant in the prediction market. 

The social connections between the participants are described by an 𝑛𝑛 × 𝑛𝑛 dimensional matrix denoted 

by 𝑔𝑔 ∈ {0,1}𝑛𝑛×𝑛𝑛, such that: 

 𝑔𝑔𝑖𝑖𝑗𝑗 = �
1,    𝑖𝑖𝑖𝑖  (𝑖𝑖, 𝑗𝑗) ∈ 𝐿𝐿 

0,       𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑖𝑖𝑒𝑒𝑒𝑒
, 

where 𝑔𝑔𝑖𝑖𝑗𝑗 = 1 implies that participants 𝑖𝑖 and 𝑗𝑗 are friends; otherwise, they are not. Let 𝑁𝑁𝑖𝑖(𝑔𝑔) =

{𝑗𝑗 ∈ 𝑁𝑁:𝑔𝑔𝑖𝑖𝑗𝑗 = 1} represent the set of friends of participant 𝑖𝑖. The degree of participant 𝑖𝑖 is the number 

of participant 𝑖𝑖’s friends: 𝑘𝑘𝑖𝑖(𝑔𝑔) = #𝑁𝑁𝑖𝑖(𝑔𝑔). Following the prior literature (Ozsoylev and Walden 2011; 

Han and Yang 2013), we assume that the social network is undirected and that prediction market 

participants can freely communicate their private signals to others that are connected to them in the 

network.15 In other words, participant 𝑖𝑖 can observe her friends’ signals, 𝑆𝑆𝑗𝑗, 𝑗𝑗 ∈ 𝑁𝑁𝑖𝑖(𝑔𝑔), and take them 

into account in her inference process.  

In the DO framework, each participant completely igores others’ information contained in market 

prices. However, in our social network setup, we assume that DO participants consider the signals from 

their friends in the inference process. Actually, these two assumptions are compatible. As we pointed 

out, DO can be motivated by behavioral biases, such as bounded rationality and limited computational 

capacity, or heterogeneous priors. In our study, we adopt the first explanation: A prediction market 

participant lacks the ability to extract other participants’ information from market prices.16 However, if 

other participants’ signals are directly given to her, she should have no problems using the signals. The 

rationality requirement for using available signals from friends is much lower than extracting other 

participants’ information from market prices, because drawing inferences from market prices requires 

complete knowledge of the market clearing process and correct conjectures on equlibrium prices. In our 

                                                 
15 For simplicity, we assume the network is undirected, but the results also hold for directed networks. 
16 As Hong and Stein (2003, p. 491) pointed out, “the differences of opinion can be thought of as reflecting a type of bounded rationality in which investors 
are simply unable to make inferences from prices.” 
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bounded rationality framework, the fact that a participant ignores others’ information contained in 

market prices is not because she always wants to ignore others’ information. The underlying deep reason 

is the constraint on participants’ information-processing abilities: They are unable to extract others’ 

information from market prices because they have limited cognitive abilities to process information 

(Kahneman 2003).  

The key difference between the information contained in market prices and signals passed from 

friends is how information is presented and displayed. In an analytical model, Hirshleifer and Teoh (2003) 

assumed that financial information that is presented in a salient, easily processed form can be absorbed 

more easily by traders than information that is less salient and difficult to process because traders have 

limited attention and processing power. In our context, other participants’ information contained in 

market prices is less salient and difficult to process.17 Peng (2005) pointed out that learning from prices 

is not free, since doing so requires knowledge of the structure of the market. Traders have limited time 

and attention to process information, and the capacity constraint limits the amount of information that 

she can process. An important argument in Hirshleifer and Teoh (2003) is that limited information 

processing capacity tends to induce participants to use information that is presented in salient, easily 

processed form (in our context, it refers to the signals from friends) rather than non-salient or hard-to-

process information (in our context, it refers to the information contained in market prices).18  

Additionally, experimental evidence in prior literature suggests that extracting information from 

                                                 
17 Hong and Stein (1999) proposed a model based on investors with bounded rationality to explain the momentum phenomenon in financial markets. They 
placed constraints on traders' information-processing abilities and assumed a group of boundedly rational agents, “newswatchers”: Each newswatcher 
observes her private information, but fails to extract other newswatchers’ information from prices. More specifically, the newswatchers make forecasts based 
on signals that they privately observe about future fundamentals; their limitation is that they do not condition on prices. Hong and Stein (1999) argued that 
this assumption can be motivated by bounded rationality, a plausible and intuitively appealing explanation: Traders are unable to use market prices to form 
more sophisticated forecasts. 
18 It is worth noting that the rationality requirement of extracting useful information from market prices in an REE is higher than that of drawing inferences 
from a given price. In an REE, each trader needs to correctly conjecture the equilibrium price (which will be determined by each trader’s trading position), 
and then draws inferences from the price and makes her trading decision. Therefore, the rationality requirement of extracting useful information from market 
prices in an REE consists of two critical steps: (i) forming a correct expectation on the equilibrium price, and (ii) drawing inferences from the given price. 
Apparently, forming a correct expectation on the equilibrium price is challenging work. In an analytical model, Vives (1993) showed that the speed of 
learning to form correct expectations (the speed of converging to correct rational expectations) is very slow. In contrast, when each participant considers 
their friends’ signals in our social-network-embedded prediction markets, the friends’ signals are given to each participant directly. The rationality 
requirement of considering others’ signals is much lower than that of extracting useful information from market prices because each participant is not 
required to form correct expectations on market prices. 
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prices is more difficult than using available information directly. The time and attention needed to 

process financial information contained in prices is non-trivial. The empirical findings from laboratory 

markets show that traders rarely extract information that is available in prices. For instance, Bloomfield, 

Tayler, and Zhou (2009) tested a key assumption in Hong and Stein (1999) in a laboratory experiment—

traders’ inability to draw inferences from the market price—and found evidence supporting that the 

traders fail to infer other traders’ information from market prices. In another laboratory experiment, 

Corgnet, DeSantis, and Porter (2015) found that their data can be best explained by the model in which 

traders do not infer other traders’ information from market prices but apply Bayes’ rule to compute the 

expected value of the asset given their own information.  

To make our model analytically tractable, we consider three special cases of a general social 

graph 𝑔𝑔: (i) a regular social network without homophily, where every participant has the same degree 

𝑘𝑘  (Jackson 2008). In this case, we assume the private signal errors to be independent across all 

participants; (ii) a regular social network with homophily. Homophily is a typical phenomenon observed 

in social networks in that there are inherent similarities in friends’ personal characteristics (Aral and 

Walker 2011; Gu et al. 2014; Bapna and Umyarov 2015). In this case, we assume that the errors of 

private signals are positively correlated; and (iii) a heterogenous social network where a participant has 

either degree 0 or degree 𝑘𝑘 (the analytical results of this case can be found in online appendix B). 

Although oversimplified, the network structure in these three cases reflects some fundamental features 

of typical social networks in reality and enables us to draw analytical insights. For instance, Cases (i) 

and (ii) are more balanced social networks without degree heterogeneity and reflect a flat organization 

since no one is located in the center of the network. This is similar to the assumption in Ozsoylev and 

Walden (2011): No agent is informationally superior and possesses too much information. Case (iii) is 

a more heterogenous social network and may reflect a socially embedded prediction market consisting 

of both well-connected employees who have high social skills and isolated employees who have low 
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social skills. Because the case of a general social graph is not analytically tractable, we run numerical 

simulations and show that our analytical insights remain robust when the underlying networks are more 

complicated (e.g., the Erdos–Renyi random graph, the Gilbert graph, the “small world” graph, and the 

preferential attachment graph) in Section 4.3. 

4.1  A Regular Social Network without Homophily 

In a regular network, each participant has 𝑘𝑘 friends and can receive private signals of her friends. 

Therefore, a participant 𝑖𝑖’s information set, 𝐼𝐼𝑖𝑖, includes her private signal, her friends’ private signals 

(𝑘𝑘 signals), and the common prior. She makes an inference as follows:  

 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝜌𝜌𝑉𝑉
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + 𝜌𝜌𝜀𝜀
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖 + ∑𝑗𝑗∈𝑁𝑁𝑖𝑖(𝑔𝑔)
𝜌𝜌𝜀𝜀

(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑆𝑆𝑗𝑗 , 

 𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖] = 1/[(𝑘𝑘 + 1)𝜌𝜌𝜀𝜀 + 𝜌𝜌𝑉𝑉]. 

Similarly, participant 𝑖𝑖’s position is given by equation 4, and the equilibrium prediction market price 

𝑃𝑃∗ is determined by the market clearing condition, ∑𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖∗ = 0. 

The following proposition characterizes the equilibrium of a prediction market with a regular 

social network. 

Proposition 7 (Prediction Market Equilibrium in a Regular Social Network) In a prediction market 

with a regular social network, the equilibrium prediction market price is given by 

 𝑃𝑃∗ = 𝜌𝜌𝑉𝑉
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + (𝑘𝑘+1)𝜌𝜌𝜀𝜀
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉 + (𝑘𝑘+1)𝜌𝜌𝜀𝜀
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝜀𝜀, 

where 𝜀𝜀 = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝜀𝜀𝑖𝑖, and the equilibrium position for each participant is 

 𝑥𝑥𝑖𝑖∗ = 𝜌𝜌𝜀𝜀
2𝛾𝛾
�𝜀𝜀𝑖𝑖 + ∑𝑗𝑗∈𝑁𝑁𝑖𝑖(𝑔𝑔) 𝜀𝜀𝑗𝑗 − (𝑘𝑘 + 1)𝜀𝜀�. 

Proposition 7 indicates that in a prediction market with a regular social network, the weight on 

public information is given by: 

 𝑊𝑊𝑅𝑅𝑅𝑅 = 𝜌𝜌𝑉𝑉
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

≤ 𝑊𝑊𝑁𝑁𝑃𝑃. (10) 

If we compare equation 10 with equations 5 and 6, we find that 𝑊𝑊𝑚𝑚 ≤ 𝑊𝑊𝑅𝑅𝑅𝑅 ≤ 𝑊𝑊𝑁𝑁𝑃𝑃, where 𝑊𝑊𝑚𝑚 = 𝑊𝑊𝑅𝑅𝑅𝑅 



32 
 

when 𝑘𝑘 = 𝑛𝑛 − 1 , and 𝑊𝑊𝑅𝑅𝑅𝑅 = 𝑊𝑊𝑁𝑁𝑃𝑃  when 𝑘𝑘 = 0 . The implication is that social interaction among 

prediction market participants can correct the problem of overweighting the public information. When 

the level of social interactions reaches the maximum (a complete or a fully connected social network, 

𝑘𝑘 = 𝑛𝑛 − 1), the weight on the public information is efficient in a prediction market with a regular 

network. 

Then, we compute the MSE of 𝑃𝑃∗ in a prediction market with a regular social network: 

 MSE(𝑃𝑃∗) = 𝐄𝐄[(𝑉𝑉 − 𝑃𝑃∗)2] = 𝜌𝜌𝑉𝑉
[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 + 𝜌𝜌𝜀𝜀(𝑘𝑘+1)2

𝑛𝑛[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2. (11) 

Note that when 𝑘𝑘 = 0, the MSE in a prediction market with a regular social network given by equation 

11 will convert to equation 7, the MSE in a non-networked prediction market. In general, we can consider 

a non-networked prediction market as a special case of a prediction market with a regular network (𝑘𝑘 =

0).  

Comparing the MSE in a prediction market with a regular social network with that in a non-

networked prediction market, we obtain the following proposition: 

Proposition 8 (MSE Comparison: No Network vs. Regular Network) The MSE in a non-networked 

prediction market is greater than the MSE in a prediction market with a regular social network.  

Proposition 8 shows that a prediction market with a regular social network outperforms a 

prediction market without social networks. As we have explained before, the problem of a non-

networked prediction market is that the information-aggregation process will count the public 

information multiple times, and therefore magnify the noise contained in the public information. The 

existence of a regular social network facilitates private information exchange among participants, which 

effectively puts a larger weight on the  private information. In a regular network, each participant will 

receive her friends’ private signals, and her own private signal will be received by 𝑘𝑘 friends. In other 

words, each private signal will be counted 𝑘𝑘 times when participants’ predictions are aggregated in the 

prediction market. Such multiple counting of private information is beneficial to the prediction market 
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performance because it can correct the bias toward the public information caused by overweighting the 

public information. Essentially, the advantage of embedding a social network is to use the multiple 

counting of private information to neutralize the harmful effect from the multiple counting of public 

information. 

We examine the effect of the level of social interactions, 𝑘𝑘 , on the prediction market 

performance in the following proposition: 

Proposition 9 (Impact of Social Interaction Level) The MSE in a prediction market with a regular 

network decreases with 𝑘𝑘.  

Proposition 9 shows that the prediction market performance increases with the level of social 

interactions, 𝑘𝑘. In practice, a manager may want to encourage social interactions among participants to 

improve prediction market accuracy. The intuition is similar to that in Proposition 5. As the level of 

social interactions, 𝑘𝑘, increases, the bias toward the public information will be corrected to a larger 

extent, and the weight on the public information in the information-aggregation process will be closer to 

the efficient value. 

To examine the impact of the precision of public and private information, we have the following 

proposition: 

Proposition 10 (Comparative Statics on MSE) In a prediction market with a regular social network, 

the MSE of the forecast 𝑃𝑃∗ decreases with the number of prediction market participants, 𝑛𝑛, and the 

precision of private signals, 𝜌𝜌𝜀𝜀. If 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ (𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)

𝑛𝑛
�, the MSE increases with the precision of 

public information; if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

> (𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

� , the MSE decreases with the precision of public 

information.  

The results in a prediction market with a regular social network are similar to those in a non-

networked prediction market. Increased precision of private information always enhances prediction 

market accuracy, but the impact of public information precision depends on the relative precision of 
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private information versus public information. When 𝜌𝜌𝜀𝜀 is relatively small to 𝜌𝜌𝑉𝑉, greater precision of 

the public information increases the prediction market accuracy. When 𝜌𝜌𝜀𝜀 is relatively large to 𝜌𝜌𝑉𝑉, 

greater precision of the public information decreases the prediction market accuracy. In a socially 

embedded prediction market, the prediction performance depends on not only the precisions of private 

and public information but also the level of social interactions, 𝑘𝑘.  

An interesting observation from Propositions 8, 9, and 10 is that a socially embedded prediction 

market with low precision of the private information may perform as well as a non-networked prediction 

market with high precision of the private information. A managerial implication of this result is about 

the selection of prediction market participants. In general, an internal employee has two types of skills: 

“work skills” and “social skills.” In our context, the level of work skills refers to the ability to acquire 

precise private information (knowledge creation and information production) and is measured by 𝜌𝜌𝜀𝜀. In 

contrast, the level of social skills refers to the ability to communicate and share information with 

colleagues (knowledge transfer and information communication) and is measured by 𝑘𝑘. Intuitively, a 

manager should select employees who have a high level of work skills (𝜌𝜌𝜀𝜀 ) as prediction market 

participants. This is also consistent with Proposition 10. However, Proposition 9 shows that the level of 

social skills (𝑘𝑘 ) also matters when we consider the prediction market performance. A group of 

participants who have a medium level of work skills but a high level of social skills may outperform 

those who have a high level of work skills but a low level of social skills. We provide a numerical 

example in online Appendix C.  

Regarding the precision of public information, in a prediction market with a regular network, the 

impact of increased precision of public information is given by: 

∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) = [𝑛𝑛−2(𝑘𝑘+1)](𝑘𝑘+1)𝜌𝜌𝜀𝜀
𝑛𝑛[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3�����������
Detrimental

Effect

− 𝜌𝜌𝑉𝑉
[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3���������
Beneficial
Effect

.                  (12) 

As we have stated, the impact of increased precision of public information depends on the relative 
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strength of the detrimental and beneficial effects. The beneficial effect in equation 12 does not depend 

on 𝑛𝑛, but the detrimental effect increases with 𝑛𝑛. Therefore, we should expect that increased precision 

of public information is more likely to be detrimental to the prediction market performance as 𝑛𝑛 

increases. As for the level of social interactions, 𝑘𝑘, we have the following proposition: 

Proposition 11 In a prediction market with a regular network, increased precision of public information 

is more likely to be detrimental to the prediction market performance as 𝑛𝑛  increases. When 𝑛𝑛 ≥

4(𝑘𝑘 + 1), increased precision of public information is more likely to be detrimental to the prediction 

market performance as 𝑘𝑘 increases; when 𝑛𝑛 < 4(𝑘𝑘 + 1), increased precision of public information is 

less likely to be detrimental to the prediction market performance as 𝑘𝑘 increases. Specifically, if 𝑛𝑛 <

2(𝑘𝑘 + 1) , the prediction market performance will always increase with the precision of public 

information.  

As in the previous section, we define Region I as the range of market conditions in which 

increased precision of public information enhances the prediction market accuracy and Region II as the 

range of market conditions in which increased precision of public information decreases the prediction 

market accuracy. Proposition 11 indicates the conditions in which Region II becomes larger as the level 

of social interactions, 𝑘𝑘, increases in a prediction market with a regular social network. When 𝑛𝑛 is 

large relative to 𝑘𝑘, the size of Region II increases with 𝑘𝑘. When 𝑛𝑛 is small relative to 𝑘𝑘, the size of 

Region II decreases with 𝑘𝑘.  

To provide some additional intuition, we conduct a numerical analysis and visualize Proposition 

11. In Figure 3, we set 𝑛𝑛 = 50, and vary degree 𝑘𝑘. The solid line represents 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= (𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

�, 

where 𝑘𝑘 = 1, 10, 20, and 25, and the dashed line represents the marginal line in the case of no social 

networks (𝑘𝑘 = 0): 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 𝑛𝑛−2
𝑛𝑛

. According to Proposition 11, if 𝑛𝑛 ≥ 2(𝑘𝑘 + 2), Region II should be larger 

in a prediction market with a regular social network than in a non-networked prediction market. In Figure 

3(a), the marginal line moves up as 𝑘𝑘 increases from 0 to 1, which suggests that Region II is larger 
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when a prediction market is embedded in a regular social network. In Figures 3(a) and (b), we find that 

Region II becomes larger as 𝑘𝑘 increases from 1 to 10. However, the size of Region II shrinks as 𝑘𝑘 

increases from 10 to 20 in Figures 3(b) and (c). Eventually, when 𝑘𝑘 = 25, Region II does not exist 

(only Region I left) in Figure 3(d). These results are consistent with Proposition 11: (i) When 𝑛𝑛 ≥

4(𝑘𝑘 + 1), increased precision of public information is more likely to be detrimental to the prediction 

market performance as 𝑘𝑘 increases; (ii) when 𝑛𝑛 < 4(𝑘𝑘 + 1), increased precision of public information 

is less likely to be detrimental to the prediction market performance as 𝑘𝑘 increases; and (iii) when 𝑛𝑛 <

2(𝑘𝑘 + 1) , the prediction market performance will always increase with the precision of public 

information. 

Proposition 11 has important managerial implications to corporate prediction market designers. 

First, although a socially embedded prediction market can improve the prediction market performance, 

corporate prediction market designers should pay more attention to the public information disclosure in 

a socially embedded prediction market. Even if a manager has obtained some additional information that 

can increase the precision of public information, it may not be a good idea to disclose it to all prediction 

market participants. In a socially embedded prediction market, the size of Region II could be much larger 

than in a non-networked prediction market under some circumstances. For instance, in Figure 3(b), 

where 𝑘𝑘 = 10 and 𝑛𝑛 = 50, increased precision of public information is detrimental to the prediction 

market performance if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 6.16 (the solid line). However, in a non-networked environment, increased 

precision of public information is detrimental to the prediction market performance if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 0.96 (the 

dashed line). Additionally, when 𝑛𝑛 → ∞ (a large prediction market with many participants), increased 

precision of public information is detrimental to prediction market performance if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 𝑘𝑘 + 1 in a 

regular network case, whereas the condition is 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 1  in a non-networked case. For reasonable 

parameter choices in reality, the detrimental effect of public information is much more likely to occur in 
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a socially embedded prediction market than in a non-networked case. 

 
Figure 3. The Impact of Public Information and Private Information on Prediction Market Performance (Regular 

Network), 𝑛𝑛 = 50. 
 

4.2  A Regular Social Network with Homophily 

In the previous analysis, we assume the private signal errors to be independent across all 

participants. In our context, participants connected through a social network may be similar to each other, 

and therefore may have similar information sources when formulating their private information, such as 

reading the same reports and news articles, working in the same department of the company, having 

similar educational and working experiences and so on.19 In this section, we relax the assumption of 

independent private information and assume that the errors of friends’ private signals are positively 

correlated to reflect the plausible existence of homophily.  

For analytical tractability, we first look at a regular social network with 𝑘𝑘𝑖𝑖(𝑔𝑔) = 𝑘𝑘 = 1. It means 

                                                 
19 If prediction market participants are selected from different departments of a company, they are likely to have diverse information sources, and hence 
their private signals are independent. If prediction market participants are selected from the same department, their information could be highly correlated 
because they are exposed to similar information sources. For instance, in General Electric (GE)’s prediction market, participation included employees 
representing 150 business segments from 42 countries. Private signals of employees from different countries and different business segments are less likely 
to be correlated. See http://www.consensuspoint.com/wp-content/themes/radius/whitepapers/GE_Casestudy.pdf. As argued in Keuschnigg and Ganser 
(2016), crowd wisdom does not only depend on the prediction ability/precision of agents, but also on the information diversity. We conduct a simulation 
analysis on the trade-off between information diversity and information precision, and the results can be found in online appendix F.  

http://www.consensuspoint.com/wp-content/themes/radius/whitepapers/GE_Casestudy.pdf
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that each participant has one friend and can receive the private signal of her friend. We will examine the 

impact of homophily in more complicated social networks using simulations in Section 4.3. Because of 

the homphily effect, the error of partcipant i’s private signal, 𝜀𝜀𝑖𝑖, is correalted with her friend j’s priavate 

signal error 𝜀𝜀𝑗𝑗: 

�
𝜀𝜀𝑖𝑖
𝜀𝜀𝑗𝑗�~𝑁𝑁(0, Σ),Σ = �1/𝜌𝜌𝜀𝜀 δ/𝜌𝜌𝜀𝜀

δ/𝜌𝜌𝜀𝜀 1/𝜌𝜌𝜀𝜀
�, 

where Σ is the covariance matrix for participant 𝑖𝑖’s and participant 𝑗𝑗’s signal errors, and δ is the 

correlation coefficient. In order to capture the homophily effect, we assume that 0 ≤ δ ≤ 1. Participant 

i makes an inference as follows:  

𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝜌𝜌𝑉𝑉
2

1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉0 + 𝜌𝜌𝜀𝜀

2
1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

1
1+δ

𝑆𝑆𝑖𝑖 + 𝜌𝜌𝜀𝜀
2

1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

1
1+δ

𝑆𝑆𝑗𝑗, 𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖] = 1/ � 2
1+δ

𝜌𝜌𝜀𝜀 + 𝜌𝜌𝑉𝑉�. 

The following proposition characterizes the equilibrium of a prediction market with a homophily 

social network. 

Proposition 12 (Prediction Market Equilibrium under Homophily) In a prediction market under 

homophily, the equilibrium prediction market price is given by 

 𝑃𝑃∗ = 𝜌𝜌𝑉𝑉
2

1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉0 + 2𝜌𝜌𝜀𝜀

2
1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

1
1+δ

𝑉𝑉 + 2𝜌𝜌𝜀𝜀
2

1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

1
1+δ

𝜀𝜀. 

Proposition 12 shows that in a prediction market under homophily, the weight on public 

information is  𝑊𝑊𝐻𝐻 = 𝜌𝜌𝑉𝑉
2

1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
. According to our previous analysis, in a prediction market with a 

regular social network (no homophily), the weight on public information when k = 1 is  𝑊𝑊𝑅𝑅𝑅𝑅 =

𝜌𝜌𝑉𝑉
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

= 𝜌𝜌𝑉𝑉
2𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

≤ 𝑊𝑊𝐻𝐻 . The implication is that even though social interaction among prediction 

market participants can correct the problem of overweighting the public information, the homophily 

effect tends to weaken the correction because the friend’s information is less useful under homophily. In 

an extreme case with perfect correlation (δ = 1), 𝑊𝑊𝐻𝐻 = 𝑊𝑊𝑁𝑁𝑃𝑃 , which means that social interactions 

cannot correct the overweighting problem at all when the friend’s private signal does not contain 



39 
 

additional value.   

Then, we compute the MSE of 𝑃𝑃∗ in a prediction market under homophily: 

 MSE(𝑃𝑃∗) = 𝐄𝐄[(𝑉𝑉 − 𝑃𝑃∗)2] = 𝜌𝜌𝑉𝑉

� 2
1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉�

2 +
𝜌𝜌𝜀𝜀

4
1+δ

𝑛𝑛� 2
1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉�

2,  

and we obtain the following propositions: 

Proposition 13 (Impact of Homophily) The MSE in a prediction market under homophily increases 

with δ.  

Proposition 14 (Comparative Statics on MSE) In a prediction market under homophily, the MSE of 

the forecast 𝑃𝑃∗ decreases with the number of prediction market participants, 𝑛𝑛, and the precision of 

private signals, 𝜌𝜌𝜀𝜀. If 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 2

1+δ
�𝑛𝑛−4
𝑛𝑛
�, the MSE increases with the precision of public information; if 

𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

> 2
1+δ

�𝑛𝑛−4
𝑛𝑛
�, the MSE decreases with the precision of public information.  

Proposition 13 suggests that the homophily effect tends to be detrimental to the prediction market 

performance. Proposition 14 further shows that the impact of increased precision of public information 

depends on the information correlation coefficent δ, which measures the effect of homophily.  

A surprising result based on Proposition 14 is that, as the homophily effect 𝛿𝛿 increases, the 

region in which greater precision of the public information is detrimental to the prediction market 

accuracy becomes smaller. In other words, increased precision of public information is less likely to be 

detrimental to the prediction market performance when the homophily effect is stronger. The intuition 

is as follows: If the role of public information precision is relatively important compared with the role 

of private information precision, greater public information prcesion is beneficial to the prediction 

market performance; otherwise, it is detrimental to the performance (a main analytical result that is 

robust in all our different cases). For instance, if public information precision is high, then the role of 

public information is relatively important, and greater public information precision is more likely to be 

beneficial. However, if private information precision is high, then the role of public information is 
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relatively unimportant, and greater public information precision is more likely to be detrimental. If 

homophily is more signifiacant, it will reduce the informational value of friends’ signals, and the role of 

private/public information precision will become smaller/larger because a focal participant will receive 

less valuable information from her friends. Therefore, greater public information precision is less likely 

to be detrimental.  

4.3  Numerical Simulations on More Complicated Social Networks 

We examine prediction markets in which participants are embedded in more complicated social 

networks, including the Gilbert graph, the Erdos–Renyi random graph, the “small world” graph, and the 

preferential attachment graph. We use CONTEST, a network toolbox for MATLAB, to simulate the 

aforementioned random graphs (Taylor and Higham 2009). 

The Gilbert graph and the Erdos–Renyi random graph are classical random graph models. In 

Gilbert’s model (Gilbert 1959), a link between two prediction market participants is formed with an 

independent probability 𝑝𝑝. We set the parameter values 𝑛𝑛 = 50, 𝑉𝑉0 = 10, 𝜌𝜌𝜀𝜀 = 0.1, and 𝑝𝑝 = 0.05, 

and run the simulation 10,000 times to calculate the MSE in the prediction market. The results are robust 

for other parameter values. Figures 4(a) and (b) show the effect of the precision of public information 

on the MSE in a prediction market with a Gilbert network under no homophily/homophily (the 

homophily correlation coefficent is 0.2). The results are consistent in both no homophily and homophily 

cases. When the public information is noisy, increased precision of public information is detrimental to 

the prediction market performance. When public information is precise, increased precision of public 

information is beneficial to the prediction market performance. 

In the Erdos–Renyi model (Erdos and Renyi 1960), the number of links, 𝑚𝑚, in the network is 

specified. We then select uniformly at random from the set of all social networks containing 𝑛𝑛 = 50 

participants and 𝑚𝑚 links. We follow Taylor and Higham (2009) and set 𝑚𝑚 to be the smallest integer 

bigger than (𝑛𝑛log𝑛𝑛)/2. The result is similar and shown in Figure 5.  
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(a) No homophily (b) Homophily 

Figure 4. The Effect of the Precision of Public Information on the MSE in a Gilbert Network, 𝑛𝑛 = 50, 𝑉𝑉0 =
10, 𝜌𝜌𝜀𝜀 = 0.1, and 𝑝𝑝 = 0.05. 

 

  

(a) No homophily (b) Homophily 

Figure 5. The Effect of the Precision of Public Information on the MSE in a Erdos–Renyi Network, 𝑛𝑛 = 50, 
𝑉𝑉0 = 10, and 𝜌𝜌𝜀𝜀 = 0.1.  

 
Motivated by the fact that many real-world networks have a small average shortest path length, 

Watts and Strogatz (1998) proposed a “small-world” network in which most nodes are not neighbors of 

one another, but most nodes can be reached from every other by a small number of steps. Following 

Taylor and Higham (2009), the Watts-Strogatz model begins with a 𝑘𝑘-nearest neighbor ring. Then, each 

participant is considered independently in turn. With a fixed probability 𝑝𝑝, a participant is given an extra 

link connecting it to a participant chosen uniformly at random across the network. We choose the default 

parameter values in Taylor and Higham (2009): 𝑘𝑘 = 2 and 𝑝𝑝 = 0.1. The result is shown in Figure 6.   
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(a) No homophily (b) Homophily 

Figure 6. The Effect of the Precision of Public Information on the MSE in in a Small-World Network, 𝑛𝑛 = 50, 
𝑉𝑉0 = 10, and 𝜌𝜌𝜀𝜀 = 0.1.  

 

  

(a) No homophily (b) Homophily 

Figure 7. The Effect of the Precision of Public Information on the MSE in in a Preferential Attachment Network, 
𝑛𝑛 = 50, 𝑉𝑉0 = 10, and 𝜌𝜌𝜀𝜀 = 0.1.  

 
The preferential attachment graph is a scale-free network that has a power-law degree distribution 

(Barabasi and Albert 1999). Scale-free networks are widely observed in reality. In Barabasi and Albert’s 

model, the graph grows until 𝑛𝑛 participants haven been created. Each new participant is given 𝑑𝑑 links 

on arrival. These new connections are not chosen uniformly—the new links to an existing participant 

with a probability that is proportional to the current degree of that participant. In this way, well-connected 

participants tend to become even better connected as the graph evolves. We follow Taylor and Higham 

(2009) and set 𝑑𝑑 = 2. We observe that the result in Figure 7 is similar. To provide a benchmark, we 

also depict the non-networked case using the same parameter values in Figure D.1, which can be found 
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in online Appendix D.  

5  Managerial Implications 

The advancement of social media technologies has provided an unprecedented opportunity for 

corporate prediction market designers to facilitate information communications within organizations and 

to improve the prediction market performance. Our analytical results have the following implications 

and guidance for corporate prediction market design. 

When should a corporate manager disclose more precise public information? Although 

increased precision of the public information is always beneficial to individual prediction market 

participants, it can be detrimental to prediction market performance as a whole when the public 

information is relatively noisy. When corporate prediction market designers choose the extent of public 

information disclosure, they need to know the level of public information precision relative to private 

information precision. If the private information is relatively precise, the corporation may want to hide 

the public information as much as possible. However, if the public information is relatively precise, the 

corporation may want to disclose the public information as much as possible.20 

When should a corporate manager encourage social interactions among prediction market 

participants? Our model shows that social interactions among prediction market participants can 

improve the prediction market performance. The social network, however, has a side effect. As the level 

of social interaction increases, increased precision of public information may be more likely to be 

detrimental under some market conditions. Corporate prediction market designers should consider the 

pros and cons of embedding social networks in a prediction market. If increasing the level of social 

interactions is beneficial, managers can (i) encourage employees to be involved in multiple projects 

throughout the company and to become effective information hubs, and (ii) promote social networking 

                                                 
20 A company can evaluate and estimate the relative level of public information precision on a case-by-case basis. Suppose that we have two corporate 
prediction markets: One focuses on predicting the future sales of an existing product, and the other focuses on predicting the future sales of a new product. 
The public information should be more precise in the first prediction market than in the second prediction market because the past sales information of the 
existing product is publicly available within the company and can be used to predict future sales. On the other hand, participants have less precise public 
information to predict future sales of new products.  
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among employees using Facebook, Twitter, LinkedIn, or the in-house corporate network.21 Managers 

can directly measure the actual information flow among employees, such as employees’ discussions, in 

the internal social media platform or infer the information flow through monitoring correlated prediction 

market trading behavior among corporate employees.22 

More generally, our analytical model reminds corporate managers that the prediction market is 

not a panacea for all decision-making problems. It is true that corporate hierarchy can cause individual 

employees to overweight the existing public information. However, a prediction market may lead to a 

similar problem: The information-aggregation mechanism places a larger-than-efficient weight on the 

public information. As a result, increased precision of public information can be detrimental. The bottom 

line is that managers should be fully aware of the market conditions in which disclosing more precise 

public information is detrimental. 

6  Conclusions 

Introducing corporate prediction markets has become a popular way for companies to improve 

business decision making. In the present study, we examine the roles of information precision and social 

interactions in corporate prediction markets. The wisdom of crowds hypothesis states that existing 

prediction market prices always incorporate and reflect all relevant information of individuals. However, 

this hypothesis considers only the aggregation of diverse private information, leaving out the role of 

public information that is available to all participants. In our analytical model, we find that the prediction 

market mechanism places a larger than efficient weight on the public information. If a social network is 

embedded, information sharing among participants may help correct this inefficiency. Therefore, the 

integration of prediction markets with a social network is not only theoretically interesting (a social 

                                                 
21 A designer of Google’s prediction markets (GPM) pointed out that Google “should make the trading more social… should build in more social features 
and personalization into GPM (Coles et al. 2007, pp. 2, 14). To facilitate information exchange among participants, companies may pack them in tight in 
the working environment (such as sharing office rooms and providing public coffee areas), so that they can share information. Companies can also provide 
internal social media platforms for prediction market participants to communicate with each other. Montgomery et al. (2013) documented that Ford 
employees participating in the prediction market saw an internal social platform as an outlet for expressing their opinions about predictions and demonstrated 
a strong desire to write comments attempting to convince each other of their positions. 
22 If trading positions of two employees are highly correlated over time, it suggests an information flow between them. Using the past trading behavior data, 
a company can have a better idea about the actual information flows within the organization. 
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context is often neglected in the modeling of prediction markets), but also practically important. Our 

analysis should serve as a guide for corporate managers when they design internal prediction markets. 

There are several possible extensions to our research. First, in our model, we assume that 

participants are able to observe their friends’ private signals without information loss. It would be 

interesting to examine the information loss or bias caused by communication barriers or strategic issues 

(Lin, Geng, and Whinston 2005; Chen, Xu, and Whinston 2011). Second, one avenue of extending our 

model is to incorporate “semipublic” information that is available only to a specific group of participants 

in a heterogenous network. In the present paper, we distinguish two extreme types of information: private 

information that is received by single individuals only and public information that is available to all 

participants. In future research, one may allow for intermediate degrees of publicity: information that is 

common knowledge to only a fraction of all participants. For instance, in a company, the semipublic 

information in the marketing department might be different from that in the engineering department. 

Another potential avenue for further research is to study how social network structures affect the role of 

public information precision in prediction markets. 
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“Hidden Profiles” in Corporate Prediction Markets: The Impact of Public 

Information Precision and Social Interactions (Online Appendix) 

 

Online Appendix A: Proof 

Proof of Proposition 1 

Proof. Each participant’s demand for the security is given by equation 4. We solve the 

equilibrium prediction market price 𝑃𝑃∗  by plugging equation 4 into the market clearing 

condition, ∑𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖∗ = 0. Then we can obtain the equilibrium demand 𝑥𝑥𝑖𝑖∗.    

 

Proof of Proposition 2 

Proof. From equation 7, it is obvious that MSE(𝑃𝑃∗) decreases with  𝑛𝑛. We can also obtain: 

 ∂
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and 
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≤ 𝑛𝑛−2

𝑛𝑛
, ∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) ≥ 0; if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

> 𝑛𝑛−2
𝑛𝑛

, ∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) < 0.    

 

Proof of Proposition 3 

Proof. The marginal line 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 𝑛𝑛−2
𝑛𝑛

 determines the range of two regions (whether or not 

increased precision of public information is detrimental), and 𝑛𝑛−2
𝑛𝑛

 increases with 𝑛𝑛. Therefore, 
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as 𝑛𝑛 increases, the region, 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 𝑛𝑛−2

𝑛𝑛
, becomes larger, and the region, 𝜌𝜌𝑉𝑉

𝜌𝜌𝜀𝜀
> 𝑛𝑛−2

𝑛𝑛
, shrinks.    

 

Proof of Proposition 4 

Proof. Each participant’s demand for the security is given by equation 𝑥𝑥𝑖𝑖∗ = 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖]−𝑃𝑃
2𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖]

. For a DO 

trader 𝑖𝑖 ∈ 𝐶𝐶𝐷𝐷𝐷𝐷: 

𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝐄𝐄[𝑉𝑉|𝑆𝑆𝑖𝑖] = 𝜌𝜌𝑉𝑉
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For an REE trader 𝑖𝑖 ∈ 𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅: 
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We solve the equilibrium prediction market price 𝑃𝑃∗ by plugging these equations into the 

market clearing condition, ∑ 𝑥𝑥𝑖𝑖∗𝑖𝑖∈𝐶𝐶𝐷𝐷𝐷𝐷 + ∑ 𝑥𝑥𝑗𝑗∗𝑗𝑗∈𝐶𝐶𝑅𝑅𝑅𝑅𝑅𝑅 = 0. Then we compare the solution from the 

market clearing condition with the initial conjecture:  

𝑃𝑃∗ = 𝑎𝑎 + 𝑏𝑏𝑉𝑉 + 𝑐𝑐𝜀𝜀, 

and determine the coefficents a, b, and c.  

 

Proof of Proposition 5  

Proof. When 𝑚𝑚 ≥ 1, 

∂
∂𝑚𝑚
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Proof of Proposition 6 

Proof. ∂
∂𝑛𝑛

MSE(𝑃𝑃∗) = − 2𝜌𝜌𝜀𝜀𝜌𝜌𝑉𝑉
[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 + 2(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀

𝑛𝑛[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 −
(𝑛𝑛+1−𝑚𝑚)2𝜌𝜌𝜀𝜀

𝑛𝑛2[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 −

2(𝑛𝑛+1−𝑚𝑚)2𝜌𝜌𝜀𝜀𝜌𝜌𝑉𝑉
𝑛𝑛[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 = −2(𝑚𝑚−1)𝑛𝑛𝜌𝜌𝜀𝜀𝜌𝜌𝑉𝑉−(𝑛𝑛+1−𝑚𝑚)2[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]𝜌𝜌𝜀𝜀

𝑛𝑛2[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 < 0. 

∂
∂𝜌𝜌𝜀𝜀

MSE(𝑃𝑃∗) = − 2(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝑉𝑉
[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 + (𝑛𝑛+1−𝑚𝑚)2

𝑛𝑛[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 −
2(𝑛𝑛+1−𝑚𝑚)3𝜌𝜌𝜀𝜀

𝑛𝑛[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 =

−(𝑛𝑛+1−𝑚𝑚)(𝑚𝑚+𝑛𝑛−1)𝜌𝜌𝑉𝑉−(𝑛𝑛+1−𝑚𝑚)3𝜌𝜌𝜀𝜀
𝑛𝑛2[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 < 0. 

∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) = 1
[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 −

2𝜌𝜌𝑉𝑉
[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 −

2(𝑛𝑛+1−𝑚𝑚)2𝜌𝜌𝜀𝜀
𝑛𝑛[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 =

(𝑛𝑛+1−𝑚𝑚)(2𝑚𝑚−𝑛𝑛−2)𝜌𝜌𝜀𝜀−𝑛𝑛𝜌𝜌𝑉𝑉
𝑛𝑛2[(𝑛𝑛+1−𝑚𝑚)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 . 

If 𝑚𝑚 ≤ 𝑛𝑛+2
2

, ∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) < 0. If 𝑚𝑚 > 𝑛𝑛+2
2

 and 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ (2𝑚𝑚−2−𝑛𝑛)(𝑛𝑛+1−𝑚𝑚)

𝑛𝑛
, ∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) ≥ 0; if 

𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

> (2𝑚𝑚−2−𝑛𝑛)(𝑛𝑛+1−𝑚𝑚)
𝑛𝑛

, ∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) < 0.  

 
 
Proof of Proposition 7 

Proof. We plug 𝑥𝑥𝑖𝑖∗ = 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖]−𝑃𝑃
2𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖]

 into the market clearing condition and obtain: 

 𝑃𝑃∗ = 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝜌𝜌𝑉𝑉

(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉0 + (𝑘𝑘+1)𝜌𝜌𝜀𝜀

(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉 + (𝑘𝑘+1)𝜌𝜌𝜀𝜀

(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝜀𝜀. 

Then,  

 𝑥𝑥𝑖𝑖∗ = 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖]−𝑃𝑃∗

2𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖]
= 𝜌𝜌𝜀𝜀

2𝛾𝛾
�𝜀𝜀𝑖𝑖 + ∑𝑗𝑗∈𝑁𝑁𝑖𝑖(𝑔𝑔) 𝜀𝜀𝑗𝑗 − (𝑘𝑘 + 1)𝜀𝜀�. 

    

Proof of Proposition 8 

Proof. From equations 7 and 11, we can obtain the difference between the MSE in a prediction 

market without social networks and the MSE in a prediction market with a regular social 

network:  
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 𝜌𝜌𝑉𝑉
(𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉)2 + 𝜌𝜌𝜀𝜀

𝑛𝑛(𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉)2 −
𝜌𝜌𝑉𝑉

[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 −
𝜌𝜌𝜀𝜀(𝑘𝑘+1)2

𝑛𝑛[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]2 ≥ 0, 

where the equality holds when 𝑘𝑘 = 0.    

 

Proof of Proposition 9 

Proof. From equation 11, we can obtain: 

 ∂
∂𝑘𝑘

MSE(𝑃𝑃∗) = 1
[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 �−2𝜌𝜌𝜀𝜀𝜌𝜌𝑉𝑉 + 2

𝑛𝑛
𝜌𝜌𝜀𝜀𝜌𝜌𝑉𝑉(𝑘𝑘 + 1)� ≤ 0. 

The inequality comes from the fact that 𝑘𝑘 + 1 ≤ 𝑛𝑛 in a regular network.  

   

Proof of Proposition 10 

Proof. From equation 11, it is obvious that MSE(𝑃𝑃∗) decreases with  𝑛𝑛. From equation 11, we 

can also obtain: 

 ∂
∂𝜌𝜌𝜀𝜀

MSE(𝑃𝑃∗) 

 = 1
[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 �−

𝜌𝜌𝜀𝜀(𝑘𝑘+1)3

𝑛𝑛
+ �𝑘𝑘+1

𝑛𝑛
− 2� 𝜌𝜌𝑉𝑉(𝑘𝑘 + 1)� < 0, 

and 

 ∂
∂𝜌𝜌𝑉𝑉

MSE(𝑃𝑃∗) 

 = 1
[(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉]3 ��

𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

� (𝑘𝑘 + 1)𝜌𝜌𝜀𝜀 − 𝜌𝜌𝑉𝑉�. 

Therefore, the result follows.    

 

Proof of Proposition 11 

Proof. The marginal line 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= (𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

� determines the range of two regions (whether 

or not increased precision of public information is detrimental). The right hand side (𝑘𝑘 +
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1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

� increases with 𝑛𝑛, increases with 𝑘𝑘 if 𝑛𝑛 ≥ 4(𝑘𝑘 + 1), and decreases with 𝑘𝑘 if 

𝑛𝑛 < 4(𝑘𝑘 + 1).    

 

Proof of Proposition 12 

Proof. Each participant’s demand for the security is given by equation 𝑥𝑥𝑖𝑖∗ = 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖]−𝑃𝑃
2𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖]

. In the 

homophily case,  

𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝜌𝜌𝑉𝑉
2

1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉0 + 𝜌𝜌𝜀𝜀

2
1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

1
1+δ

𝑆𝑆𝑖𝑖 + 𝜌𝜌𝜀𝜀
2

1+δ𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

1
1+δ

𝑆𝑆𝑗𝑗, 𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖] = 1/ � 2
1+δ

𝜌𝜌𝜀𝜀 + 𝜌𝜌𝑉𝑉�. 

We solve the equlibrium price by using the market clearing condition ∑𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖∗ = 0. 

 

Proof of Proposition 13 

Proof. ∂
∂δ

MSE(𝑃𝑃∗) = 4𝜌𝜌𝑉𝑉𝜌𝜌𝜀𝜀
(1+𝛿𝛿)2(𝜌𝜌𝑉𝑉+

2𝜌𝜌𝜀𝜀
1+𝛿𝛿)3

+ 16𝜌𝜌𝜀𝜀2

𝑛𝑛(1+𝛿𝛿)3(𝜌𝜌𝑉𝑉+
2𝜌𝜌𝜀𝜀
1+𝛿𝛿)3

− 4𝜌𝜌𝜀𝜀
𝑛𝑛(1+𝛿𝛿)2(𝜌𝜌𝑉𝑉+

2𝜌𝜌𝜀𝜀
1+𝛿𝛿)2

=

 4𝜌𝜌𝜀𝜀[(−1+𝑛𝑛)(1+𝛿𝛿)𝜌𝜌𝑉𝑉+2𝜌𝜌𝜀𝜀]
𝑛𝑛[(1+𝛿𝛿)𝜌𝜌𝑉𝑉+2𝜌𝜌𝜀𝜀]3

> 0. 
      

Proof of Proposition 14 

Proof. ∂
∂𝑛𝑛

MSE(𝑃𝑃∗) = − 4𝜌𝜌𝜀𝜀

𝑛𝑛2(1+𝛿𝛿)�𝜌𝜌𝑉𝑉+
2𝜌𝜌𝜀𝜀
1+𝛿𝛿�

2 < 0. 

∂
∂𝜌𝜌𝜀𝜀

MSE(𝑃𝑃∗) = − 4𝜌𝜌𝑉𝑉

(1+𝛿𝛿)�𝜌𝜌𝑉𝑉+
2𝜌𝜌𝜀𝜀
1+𝛿𝛿�

3 −
16𝜌𝜌𝜀𝜀

𝑛𝑛(1+𝛿𝛿)2�𝜌𝜌𝑉𝑉+
2𝜌𝜌𝜀𝜀
1+𝛿𝛿�

3 + 4

𝑛𝑛(1+𝛿𝛿)�𝜌𝜌𝑉𝑉+
2𝜌𝜌𝜀𝜀
1+𝛿𝛿�

2 =

 −4(1+𝛿𝛿)[(−1+𝑛𝑛)(1+𝛿𝛿)𝜌𝜌𝑉𝑉+2𝜌𝜌𝜀𝜀]
𝑛𝑛[(1+𝛿𝛿)𝜌𝜌𝑉𝑉+2𝜌𝜌𝜀𝜀]3 < 0. 

 
∂

∂𝜌𝜌𝑉𝑉
MSE(𝑃𝑃∗) = − 2𝜌𝜌𝑉𝑉

(𝜌𝜌𝑉𝑉+
2𝜌𝜌𝜀𝜀
1+𝛿𝛿)3

− 8𝜌𝜌𝜀𝜀
𝑛𝑛(1+𝛿𝛿)(𝜌𝜌𝑉𝑉+

2𝜌𝜌𝜀𝜀
1+𝛿𝛿)3

+ 1
(𝜌𝜌𝑉𝑉+

2𝜌𝜌𝜀𝜀
1+𝛿𝛿)2

= − (1+𝛿𝛿)2[𝑛𝑛(1+𝛿𝛿)𝜌𝜌𝑉𝑉−2(−4+𝑛𝑛)𝜌𝜌𝜀𝜀]
𝑛𝑛[(1+𝛿𝛿)𝜌𝜌𝑉𝑉+2𝜌𝜌𝜀𝜀]3 . 

If 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 2

1+δ
�𝑛𝑛−4
𝑛𝑛
�, ∂

∂𝜌𝜌𝑉𝑉
MSE(𝑃𝑃∗) is positive; if 𝜌𝜌𝑉𝑉

𝜌𝜌𝜀𝜀
> 2

1+δ
�𝑛𝑛−4
𝑛𝑛
�, ∂

∂𝜌𝜌𝑉𝑉
MSE(𝑃𝑃∗) is negative. 
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Online Appendix B: A Heterogenous Social Network 

In a heterogenous social network, we have two types of participants: (i) participants 

whose degree is 0; and (ii) participants whose degree is 𝑘𝑘. The proportions of degree 0 and 

degree 𝑘𝑘 participants are 𝑎𝑎0 and 1 − 𝑎𝑎0, respectively. Note that if 𝑎𝑎0 = 1 or 0, a prediction 

market with a heterogenous social network will degenerate to two special cases: a 

non-networked prediction market (𝑎𝑎0 = 1) or a prediction market with a regular social network 

(𝑎𝑎0 = 0). We denote the set of degree 0  participants by 𝐷𝐷0 , and the set of degree 𝑘𝑘 

participants by 𝐷𝐷𝑘𝑘. Therefore, the set of all participants 𝑁𝑁 = 𝐷𝐷0 ∪ 𝐷𝐷𝑘𝑘. 

In a heterogenous social network, degree 0 and degree 𝑘𝑘 participants have different 

information sets. The inference process of a degree 0 participant is similar to that of a 

participant in a non-networked prediction market. For an individual  𝑖𝑖 ∈ 𝐷𝐷0, she makes an 

inference using her own private signal and the common prior:  

 𝐄𝐄0[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝐄𝐄0[𝑉𝑉|𝑆𝑆𝑖𝑖] = 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + 𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖, 

 𝐕𝐕𝐕𝐕𝐕𝐕0[𝑉𝑉|𝐼𝐼𝑖𝑖] = 1/(𝜌𝜌𝜀𝜀 + 𝜌𝜌𝑉𝑉), 

where 𝐄𝐄0[𝑉𝑉|𝐼𝐼𝑖𝑖] and 𝐕𝐕𝐕𝐕𝐕𝐕0[𝑉𝑉|𝐼𝐼𝑖𝑖] are the conditional expectation and conditional variance of a 

degree 0 participant. 

The inference process of a degree 𝑘𝑘 participant is similar to that of a participant in a 

prediction market with a regular network. A degree 𝑘𝑘 participant’s information set includes her 

private signal, her friends’ private signals (𝑘𝑘 signals), and the common prior. For an individual  

𝑗𝑗 ∈ 𝐷𝐷𝑘𝑘, she makes an inference as follows:  

 𝐄𝐄𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗� = 𝜌𝜌𝑉𝑉
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + 𝜌𝜌𝜀𝜀
(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖 + ∑ℎ∈𝑁𝑁𝑗𝑗(𝑔𝑔)
𝜌𝜌𝜀𝜀

(𝑘𝑘+1)𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑆𝑆ℎ, 

 𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗� = 1/[(𝑘𝑘 + 1)𝜌𝜌𝜀𝜀 + 𝜌𝜌𝑉𝑉], 
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where 𝐄𝐄𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗� and 𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗� are the conditional expectation and conditional variance of a 

degree 𝑘𝑘 participant. The market clearing condition is given by: 

 ∑𝑖𝑖∈𝐷𝐷0 𝑥𝑥𝑖𝑖
∗ + ∑𝑗𝑗∈𝐷𝐷𝑘𝑘 𝑥𝑥𝑗𝑗

∗ = 0, 

where 𝑥𝑥𝑖𝑖∗  and 𝑥𝑥𝑗𝑗∗  indicate the optimal positions of degree 0  and degree 𝑘𝑘  participants 

respectively and are given as follows: 

 𝑥𝑥𝑖𝑖∗ = 𝐄𝐄0[𝑉𝑉|𝐼𝐼𝑖𝑖]−𝑃𝑃
2𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕0[𝑉𝑉|𝐼𝐼𝑖𝑖]

, 𝑥𝑥𝑗𝑗∗ = 𝐄𝐄𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�−𝑃𝑃
2𝛾𝛾𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�

. 

The equilibrium is characterized in the following proposition: 

Proposition B.1 (Prediction Market Equilibrium in a Heterogeneous Social Network) In a 

prediction market with a heterogenous social network, the equilibrium prediction market price is 

given by 

 𝑃𝑃∗ =
𝑎𝑎0𝑛𝑛

𝐕𝐕𝐕𝐕𝐕𝐕0�𝑉𝑉|𝐼𝐼𝑖𝑖�
𝑎𝑎0𝑛𝑛

𝐕𝐕𝐕𝐕𝐕𝐕0�𝑉𝑉|𝐼𝐼𝑖𝑖�
+ (1−𝑎𝑎0)𝑛𝑛
𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�

∑𝑖𝑖∈𝐷𝐷0
𝐄𝐄0[𝑉𝑉|𝐼𝐼𝑖𝑖]
𝑎𝑎0𝑛𝑛

+
(1−𝑎𝑎0)𝑛𝑛
𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�

𝑎𝑎0𝑛𝑛
𝐕𝐕𝐕𝐕𝐕𝐕0�𝑉𝑉|𝐼𝐼𝑖𝑖�

+ (1−𝑎𝑎0)𝑛𝑛
𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�

∑𝑗𝑗∈𝐷𝐷𝑘𝑘
𝐄𝐄𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�
(1−𝑎𝑎0)𝑛𝑛

 

 = 𝛿𝛿𝑉𝑉0 + (1 − 𝛿𝛿)𝑉𝑉 + 𝜌𝜌𝜀𝜀
[𝑎𝑎0+(1−𝑎𝑎0)(𝑘𝑘+1)]𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

�∑𝑖𝑖∈𝐷𝐷0
𝜀𝜀𝑖𝑖
𝑛𝑛

+ (𝑘𝑘 + 1)∑𝑗𝑗∈𝐷𝐷𝑘𝑘
𝜀𝜀𝑗𝑗
𝑛𝑛
�, 

where 𝛿𝛿 = 𝜌𝜌𝑉𝑉
[𝑎𝑎0+(1−𝑎𝑎0)(𝑘𝑘+1)]𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

. The equilibrium position for individual  𝑖𝑖 ∈ 𝐷𝐷0  is 𝑥𝑥𝑖𝑖∗ =

𝑬𝑬0[𝑉𝑉|𝐼𝐼𝑖𝑖]−𝑃𝑃∗

2𝛾𝛾𝑽𝑽𝑽𝑽𝒓𝒓0[𝑉𝑉|𝐼𝐼𝑖𝑖]
, and the equilibrium position for individual  𝑗𝑗 ∈ 𝐷𝐷𝑘𝑘 is 𝑥𝑥𝑗𝑗∗ = 𝑬𝑬𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�−𝑃𝑃∗

2𝛾𝛾𝑽𝑽𝑽𝑽𝒓𝒓𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�
.                                                                                                                                                       

The market price, 𝑃𝑃∗, in a heterogenous social network is a weighted average of the 

individual expectations, and the weight depends on 𝐕𝐕𝐕𝐕𝐕𝐕0[𝑉𝑉|𝐼𝐼𝑖𝑖]  and 𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗� . In a 

non-networked prediction market or a prediction market with a regular network, 𝑃𝑃∗ is a simple 

average of individual expectations and is independent of 𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖]. This is because in these two 

cases, 𝐕𝐕𝐕𝐕𝐕𝐕[𝑉𝑉|𝐼𝐼𝑖𝑖] is the same across participants and cancels in the market clearing condition. 

However, in a heterogenous social network, 𝐕𝐕𝐕𝐕𝐕𝐕0[𝑉𝑉|𝐼𝐼𝑖𝑖] ≠ 𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�, so 𝑃𝑃∗ depends on both 
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𝐕𝐕𝐕𝐕𝐕𝐕0[𝑉𝑉|𝐼𝐼𝑖𝑖] and 𝐕𝐕𝐕𝐕𝐕𝐕𝑘𝑘�𝑉𝑉|𝐼𝐼𝑗𝑗�. 

Then, we compute the MSE of 𝑃𝑃∗ in a prediction market with a heterogenous social 

network: 

 MSE(𝑃𝑃∗) = 𝐄𝐄[(𝑉𝑉 − 𝑃𝑃∗)2] =
𝜌𝜌𝑉𝑉+

1
𝑛𝑛𝑎𝑎0𝜌𝜌𝜀𝜀+

1
𝑛𝑛𝜌𝜌𝜀𝜀(1−𝑎𝑎0)(𝑘𝑘+1)2

�[𝑎𝑎0+(1−𝑎𝑎0)(𝑘𝑘+1)]𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉�
2 . (B.1) 

Note that when 𝑎𝑎0 = 1, the MSE in a prediction market with a heterogenous social 

network will be degenerated to equation 7, the MSE in a non-networked prediction market; when 

𝑎𝑎0 = 0, the MSE in equation B.1 will be degenerated to equation 11, the MSE in a regular 

network. When 𝑛𝑛 → ∞, the MSE in equation B.1 converges to 𝜌𝜌𝑉𝑉
�[𝑎𝑎0+(1−𝑎𝑎0)(𝑘𝑘+1)]𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉�

2. If we 

compare the MSEs in different cases, we obtain the following proposition: 

 

Proposition B.2 (MSE Comparison) When 𝑛𝑛 → ∞, the MSE in a non-networked prediction 

market is greater than the MSE in a prediction market with a heterogenous social network, and 

the MSE in a prediction market with a heterogenous social network is greater than the MSE in a 

prediction market with a regular social network.  

In the following proposition, we examine the impact of the precision of public and 

private information. 

Proposition B.3 (Comparative Statics on MSE) In a prediction market with a heterogenous 

social network, the MSE of the forecast 𝑃𝑃∗ decreases with the number of prediction market 

participants, 𝑛𝑛 , and the precision of private signals, 𝜌𝜌𝜀𝜀 . If 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀
≤ 𝑛𝑛−2

𝑛𝑛
𝑎𝑎0 + (1 − 𝑎𝑎0)(𝑘𝑘 +

1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

�, the MSE increases with the precision of public information; if 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

> 𝑛𝑛−2
𝑛𝑛
𝑎𝑎0 +

(1 − 𝑎𝑎0)(𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

�, the MSE decreases with the precision of public information.  
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Similarly, Proposition B.3 shows that in a prediction market with a heterogenous social 

network, increased precision of private information always enhances the prediction market 

accuracy, but increased precision of public information might be detrimental under some market 

conditions. The marginal line in a heterogenous social network,𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 𝑛𝑛−2
𝑛𝑛
𝑎𝑎0 + (1 − 𝑎𝑎0)(𝑘𝑘 +

1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

�, is between the marginal line in a non-networked prediction market, 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 𝑛𝑛−2
𝑛𝑛

, and 

the marginal line in a regular social network, 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= (𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

�. The following numerical 

example illustrates the market conditions in which increased precision of public information is 

detrimental in a prediction market with a heterogenous social network. Figure B.1 depicts the 

contour lines of the MSE in a heterogenous social network when 𝑛𝑛 = 50, 𝑘𝑘 = 9, and 𝑎𝑎0 = 0.8. 

The marginal line in a heterogenous social network (the solid line) is between the marginal line 

in a non-networked prediction market (the dashed line) and the marginal line in a regular social 

network (the dash-dot line). It means that Region II in a heterogenous network is larger than that 

in a non-networked prediction market, but smaller than that in a regular network under the 

chosen parameter values. The intuition is that a heterogenous network is a linear combination of 

a regular network and a non-networked environment. Therefore, the marginal line in a 

heterogenous social network, 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 𝑛𝑛−2
𝑛𝑛
𝑎𝑎0 + (1 − 𝑎𝑎0)(𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)

𝑛𝑛
�, is a linear combination 

of the two: if 𝑎𝑎0 = 1, 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= 𝑛𝑛−2
𝑛𝑛

; if 𝑎𝑎0 = 0, 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀

= (𝑘𝑘 + 1) �𝑛𝑛−2(𝑘𝑘+1)
𝑛𝑛

�. 
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Figure B.1. The Impact of Public Information Precision on Prediction Market Performance 

(Heterogenous Network), 𝑛𝑛 = 50,𝑘𝑘 = 9,𝑎𝑎0 = 0.8. 
 

Online Appendix C: Selection of Prediction Market Participants 

An interesting observation from Propositions 8, 9, and 10 is that a socially embedded 

prediction market with low precision of private information may perform as well as a 

non-networked prediction market with high precision of private information. The following 

numerical example in Figure C.1 illustrates the impacts of the precision of private information, 

𝜌𝜌𝜀𝜀, and the level of social interactions, 𝑘𝑘, on prediction market performance when 𝑛𝑛 = 50 and 

𝜌𝜌𝑉𝑉 = 0.2. As we expected, prediction market performance increases with 𝜌𝜌𝜀𝜀  and 𝑘𝑘 . In a 

non-networked prediction market (𝑘𝑘 = 0), if 𝜌𝜌𝜀𝜀 = 0.125, the MSE is around 2. To reach a 

similar level of MSE, much lower precision of private information is needed in a socially 

embedded prediction market with 𝑘𝑘 = 5: 𝜌𝜌𝜀𝜀 = 0.025.   
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Figure C.1 The Impact of Social Interactions on Prediction Market Performance, 𝑛𝑛 = 50, and 𝜌𝜌𝑉𝑉 = 0.2. 

 

A managerial implication of this result is about the selection of prediction market 

participants. In general, an internal employee has two types of skills: "work skills" and "social 

skills." In our context, the level of work skills refers to the ability to acquire precise private 

information (knowledge creation and information production) and is measured by 𝜌𝜌𝜀𝜀. In contrast, 

the level of social skills refers to the ability to communicate and share information with 

colleagues (knowledge transfer and information communication) and is measured by 𝑘𝑘 . 

Intuitively, a manager should select employees who have a high level of work skills (𝜌𝜌𝜀𝜀) as 

prediction market participants. This is also consistent with Proposition 10. However, 

Propositions 8 and 9 show that the level of social skills (𝑘𝑘) also matters when we consider 

prediction market performance. A group of participants who have a medium level of work skills 

but a high level of social skills may outperform those who have a high level of work skills but a 

low level of social skills. Actually, Figure C.1 visually shows this implication by varying 𝜌𝜌𝜀𝜀 

and 𝑘𝑘. 
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Online Appendix D: Additional Numerical Analysis 

To provide a benchmark, in Figure D.1, we depict the non-networked case using the same 

paramater values as those in Section 4.3. The pattern is similar, but we have two additional 

observations: (i) The MSE in a non-networked prediction market is significantly greater than that 

in a socially embedded prediction market, which is consistent with the spirit of Proposition 5. (ii) 

The range of a detrimental effect of public information is smaller in a non-networked prediction 

market than in a socially embedded prediction market under the chosen parameter values. This is 

reminiscent of Proposition 11. 

 

Figure D.1 The Effect of the Precision of Public Information on the MSE in a Non-Networked Prediction 
Market, 𝑛𝑛 = 50, 𝑉𝑉0 = 10, and 𝜌𝜌𝜀𝜀 = 0.1. 

 

We also conduct simulation analysis to examine the impact of social influence. In our 

numerical analysis, 20% of prediction market participants are experts and they have more precise 

private signals (the precision is twice as the precision of private signals of ordinary participants). 

In this case, people will place larger weights on the information from these experts. The 

simulation results in a benchmark non-networked market and in a regular social network (k = 2) 

are presented in Figures D.2 and D.3, respectively.  
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Figure D.2 The Effect of the Precision of Public Information in a Non-Networked Prediction Market: 

Experts vs. Ordinary Participants 

 

 

Figure D.3 The Effect of the Precision of Public Information in a Regular Social Network: Experts vs. 

Ordinary Participants 

 

The simulation results with the heterogenous precesion setting in additional complicated 

social networks are presented in Figure D.4. We find that our results are robust: greater public 

information precision may be detrimental to prediction market accuracy.  
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(a) Gilbert Network (b) Erdos–Renyi Network 

  

(c) Small-World Network (d) Preferential Attachment Network 

Figure D.4 The Effect of the Precision of Public Information in Complicated Social Networks: Experts vs. 

Ordinary Participants 

 

Online Appendix E: Forecast-Report Prediction Market Mechanism 

In real-world prediction markets, there are two commonly used mechanisms of 

information aggregation: a security-trading mechanism and a forecast-report mechanism (Jian 

and Sami 2012). A security-trading mechanism is similar to a competitive financial market, and 

people trade securities based on their forecasts. The market clears when the aggregate demand 

for securities equals the supply, and market clearing determines the prediction market price. In 

this paper, we focus mainly on the security-trading mechanism.  
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A forecast-report mechanism is a proper scoring rule that elicits the true beliefs of 

participants as probabilistic forecasts. The proper scoring rules give the participants the 

incentives to report truthfully, then the principal aggregates the private information of all 

participants. For instance, the Ford Prediction Exchange (FPEx) was the first prediction market 

at Ford, developed in 2006. Instead of buying and selling stock, it used a scored polling 

mechanism in which traders made forecasts by specifying the individual predictions 

(Montgomery et al. 2013). In this appendix, we show that the overweight issues still exist in a 

forecast-report prediction market mechanism.  

The basic model setup of a forecast-report mechnaism is similar to that in Section 3.1. All 

the prediction market participants share a common prior on 𝑉𝑉, given by: 

 𝑉𝑉~𝑁𝑁(𝑉𝑉0, 1/𝜌𝜌𝑉𝑉), 

Before the prediction market opens, each participant can access a private signal: 

 𝑆𝑆𝑖𝑖 = 𝑉𝑉 + 𝜀𝜀𝑖𝑖, 𝜀𝜀𝑖𝑖~𝑁𝑁(0,1/𝜌𝜌𝜀𝜀), 𝜀𝜀𝑖𝑖 ⊥ 𝜀𝜀𝑗𝑗 .  

The manager designs a quadratic loss function to elicit the private information of 

prediction market participants. A participant’s payoff function is given by: 

𝑤𝑤(𝑥𝑥𝑖𝑖,𝑉𝑉) = 𝑎𝑎 − 𝑏𝑏(𝑥𝑥𝑖𝑖 − 𝑉𝑉)2, 

where 𝑥𝑥𝑖𝑖 is the prediction reported by participant 𝑖𝑖, and 𝑏𝑏(𝑥𝑥𝑖𝑖 − 𝑉𝑉)2 is a quadratic penalty 

term for mistakes in the forecast. The optimal report for participant 𝑖𝑖  is 𝑥𝑥𝑖𝑖∗ = 𝐸𝐸[𝑉𝑉|𝐼𝐼𝑖𝑖] =

𝐸𝐸[𝑉𝑉|𝑆𝑆𝑖𝑖], where 𝐼𝐼𝑖𝑖 is the information set of participant 𝑖𝑖.  

Following the prior literature (Armstrong 2001), we assume that the manager adopts a 

simple averaging rule to aggregate all participants’ forecasts, and his prediction is: 

 1
𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝑥𝑥𝑖𝑖∗ = 1

𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1 𝐄𝐄[𝑉𝑉|𝐼𝐼𝑖𝑖] = 𝜌𝜌𝑉𝑉

𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉
𝑉𝑉0 + 1

𝑛𝑛
∑𝑛𝑛
𝑖𝑖=1

𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑆𝑆𝑖𝑖  

= 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉0 + 𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝑉𝑉 + 𝜌𝜌𝜀𝜀
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

𝜀𝜀. 
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The weight on public information in a forecast-report mechanism is given by: 

 𝑊𝑊𝐹𝐹 = 𝜌𝜌𝑉𝑉
𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

≥ 𝑊𝑊𝑚𝑚 = 𝜌𝜌𝑉𝑉
𝑛𝑛𝜌𝜌𝜀𝜀+𝜌𝜌𝑉𝑉

, 

where 𝑊𝑊𝑚𝑚 is the efficient weight on public information. Therefore, the issue of overweighting 

public information still exists in a forecast-report prediction market mechanism. 

 

Online Appendix F: Trade-off between Information Precision and Information Diversity 

As argued in Keuschnigg and Ganser (2016), crowd wisdom does not only depend on the 

prediction ability/precision of agents, but also depends on the information diversity. In our 

simulation analysis, we examine the trade-off between information precision and information 

diversity by looking at two departments within a company. In Department H, each employee can 

access a high precision signal with 𝜌𝜌𝜀𝜀𝜀𝜀 = 0.15, while in Department L, each employee receives 

a low precision signal with 𝜌𝜌𝜀𝜀𝜀𝜀 = 0.1. In other words, employees in Department H have more 

precise information on this specific prediction market topic. For instance, employees in the 

marketing department of a company may have more precise information on product sales. In 

order to capture correlated information sources within a department, we assume that the private 

signal errors of two employees in a same department are positively correlated, but are 

independent if they are from different departments.  

 We consider an optimal selection problem of prediction market participants. Suppose that 

a corporate manager wants to a build a prediction market with 𝑛𝑛 = 50 participants, and all 

prediction market participants will be chosen from either Department H or Department L 

(without loss of generality, we assume that each department has 50 employees). In other words, 

𝑛𝑛𝜀𝜀 + 𝑛𝑛𝜀𝜀 = 50, where 𝑛𝑛𝜀𝜀 is the number of participants chosen from Department H, and 𝑛𝑛𝜀𝜀 is 

the number of participants chosen from Department L. In the following simulation analysis, we 
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examine the impact of information diversity on the composition of prediction market participants. 

For simplicity, we set parameter values 𝑉𝑉0 = 10, 𝜌𝜌𝑉𝑉 = 0.1 and 𝑘𝑘 = 1. Since we are interested 

in the impact of information diversity, we vary the correlation coefficient of private signal errors 

of employees in a same department: 𝛿𝛿 = 0, 0.3, 0.6, 0.9. Under each correlation coefficient, we 

run the simulation 10,000 times to compute the optimal number of participants chosen from 

Department H, 𝑛𝑛𝜀𝜀∗ , that achieves the highest prediction performance (the lowest MSE), and plot 

the following figure.  

 
Figure F.1 The Trade-off between Information Precision and Information Diversity 

 

Apparently, when the correlation coefficient δ = 0, all prediction market participants 

should come from Department H. The reason is that when information within a department is not 

correlated, the effect of information precision dominates: The manager should choose employees 

with the highest prediction precision. As the correlation coefficient increases, we find that the 

optimal number of participants chosen from Department H, 𝑛𝑛𝜀𝜀∗ , decreases, which shows a clear 

trade-off between information precision and information diversity. When δ  is high, the 
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information sources within a same department are highly correlated. Although Department H 

employees have more precise information, it is beneficial to have some Department L employees 

as diverse information sources.  
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